Skip to main content
Log in

Creating photonic GHZ and W states via quantum walk

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose schemes for preparing W and GHZ photonic states entangled in polarization via quantum walks, where the trajectory exchanging of identical photons plus postselection induces the coupling between their polarization degrees of freedom. Being different from the polarization beam splitter-based approach, the indistinguishability of identical photons provides an alternative for coupling photons, which is more phase stable and may induce richer actions than the traditional polarization beam splitter on input photons. Our schemes demonstrate that this new coupling mechanism for photons is originated from the fact that trajectory-exchanging operation plus postselection can extract entangled states from the initially product states, and this new coupling mechanism may find considerable potential applications in both quantum communication and quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Walter, M., Grossy, D., Eisert, J.: Multi-partite entanglement. arXiv:1612.02437 (2016)

  3. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Koashi, M., Bužek, V., Imoto, N.: Entangled webs: tight bound for symmetric sharing of entanglement. Phys. Rev. A 62(5), R050302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63(2), R020303 (2001)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, vol. 175, p. 8 (1984)

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  10. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96(6), 060502 (2006)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  13. Kempe, J.: Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60(2), 910–916 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ma, J., Huang, Y.X., Wang, X.G., Sun, C.P.: Quantum fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84(2), 022302 (2011)

    Article  ADS  Google Scholar 

  15. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, p. 69. Kluwer, Dordrecht (1989)

    Chapter  Google Scholar 

  16. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1840 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000)

    Article  ADS  MATH  Google Scholar 

  18. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  ADS  Google Scholar 

  19. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106(13), 130506 (2011)

    Article  ADS  Google Scholar 

  20. Song, C., Xu, K., Liu, W., Yang, C.P., Zheng, S.B., Deng, H., Xie, Q., Huang, K., Guo, Q., Zhang, L., Zhang, P., Xu, D., Zheng, D., Zhu, X., Wang, H., Chen, Y.A., Lu, C.Y., Han, S., Pan, J.W.: 10-Qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 119(18), 180511 (2017)

    Article  ADS  Google Scholar 

  21. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Yamamoto, T., Cleland, A.N., Martinis, J.M.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)

    Article  ADS  Google Scholar 

  22. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)

    Article  ADS  Google Scholar 

  23. Guo, G.C., Zhang, Y.S.: Scheme for preparation of the W state via cavity quantum electrodynamics. Phys. Rev. A 65(5), 054302 (2002)

    Article  ADS  Google Scholar 

  24. Guo, G.P., Li, C.F., Li, J., Guo, G.C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A 65(4), 042102 (2002)

    Article  ADS  Google Scholar 

  25. Xue, P., Guo, G.C.: Scheme for preparation of mulipartite entanglement of atomic ensembles. Phys. Rev. A 67(3), 034302 (2003)

    Article  ADS  Google Scholar 

  26. Xue, P., Han, C., Yu, B., Lin, X.M., Guo, G.C.: Entanglement preparation and quantum communication with atoms in optical cavities. Phys. Rev. A 69(5), 052318 (2004)

    Article  ADS  Google Scholar 

  27. Gao, Y.X., Zhou, H., Zou, D., Peng, X.H., Du, J.F.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87(3), 032335 (2013)

    Article  ADS  Google Scholar 

  28. Chen, J.H., Zhou, H., Duan, C.K., Peng, X.H.: Preparing Greenberger–Horne–Zeilinger and W states on a long-range Ising spin model by global controls. Phys. Rev. A 95(3), 032340 (2017)

    Article  ADS  Google Scholar 

  29. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66(6), 064301 (2002)

    Article  ADS  Google Scholar 

  30. Greganti, C., Roehsner, M.C., Barz, S., Waegell, M., Walther, P.: Practical and efficient experimental characterization of multiqubit stabilizer states. Phys. Rev. A 91(2), 022325 (2015)

    Article  ADS  Google Scholar 

  31. Ikuta, R., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Optimal local expansion of W states using linear optics and Fock states. Phys. Rev. A 83(1), 012314 (2011)

    Article  ADS  Google Scholar 

  32. Fujii, K., Maeda, H., Yamamoto, K.: Robust and scalable scheme to generate large-scale entanglement webs. Phys. Rev. A 83(5), R050303 (2011)

    Article  ADS  Google Scholar 

  33. Özdemir, Ş.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  ADS  Google Scholar 

  34. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Goebel, A., Yang, T., Pan, J.W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007)

    Article  Google Scholar 

  35. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87(3), 032331 (2013)

    Article  ADS  Google Scholar 

  36. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89(4), 042311 (2014)

    Article  ADS  Google Scholar 

  37. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)

    Article  ADS  Google Scholar 

  38. Zang, X.P., Yang, M., Song, W., Cao, Z.L.: Fusion of entangled coherent W and GHZ states in cavity QED. Opt. Commun. 370, 168–171 (2016)

    Article  ADS  Google Scholar 

  39. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic Wstates. Opt. Express 24(11), 12293–12230 (2016)

    Article  ADS  Google Scholar 

  40. Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of W states. Phys. Rev. A 94(6), 062315 (2016)

    Article  ADS  Google Scholar 

  41. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., Liu, C., Chen, C., Luo, Y.H., Su, Z.E., Wu, D., Li, Z.D., Lu, H., Hu, Y., Jiang, X., Peng, C.Z., Li, L., Liu, N.L., Chen, Y.A., Lu, C.Y., Pan, J.W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)

    Article  ADS  Google Scholar 

  42. Wang, X.L., Luo, Y.H., Huang, H.L., Chen, M.C., Su, Z.E., Liu, C., Chen, C., Li, W., Fang, Y.Q., Jiang, X., Zhang, J., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: 18-Qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120(26), 260502 (2018)

    Article  ADS  Google Scholar 

  43. Paunković, N.: The role of indistiguishability of identical particles in quantum information processing, Ph.D. thesis, Keble College, University of Oxford (2004). URL = http://sqig.math.ist.utl.pt/pub/PaunkovicN/04-P-phdthesis.pdf

  44. Lo Franco, R., Compagno, G.: Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 6, 20603 (2016)

    Article  ADS  Google Scholar 

  45. Lo Franco, R.: Compagno: indistinguishability of elementary systems as a resource for quantum information processing. Phys. Rev. Lett. 120(24), 240403 (2018)

    Article  ADS  Google Scholar 

  46. Yurke, B., Stoler, D.: Einstein–Podolsky–Rosen effects from independent particle sources. Phys. Rev. Lett. 68(9), 1251–1254 (1992)

    Article  ADS  Google Scholar 

  47. Yurke, B., Stoler, D.: Bell’s-inequality experiments using independent-particle sources. Phys. Rev. A 46(5), 2229–2234 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  48. Kim, Y.-S., Pramanik, T., Cho, Y.-W., Yang, M., Han, S.-W., Lee, S.-Y., Kang, M.-S., Moon, S.: Informationally symmetrical Bell state preparation and measurement. Opt. Express 26(22), 29539 (2018)

    Article  ADS  Google Scholar 

  49. Blasiak, P., Markiewicz, M.: Entangling three qubits without ever touching. arXiv:1807.05546 (2018)

  50. Li, X.M., Yang, M., Paunković, N., Li, D.C., Cao, Z.L.: Entanglement swapping via three-step quantum walk-like protocol. Phys. Lett. A 381(46), 3875–3879 (2017)

    Article  ADS  MATH  Google Scholar 

  51. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  52. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  53. Xue, P., Sanders, B.C., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103(18), 183602 (2009)

    Article  ADS  Google Scholar 

  54. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85(2), 022307 (2012)

    Article  ADS  Google Scholar 

  55. Xue, P., Zhang, R., Bian, Z.H., Zhan, X., Qin, H., Sanders, B.C.: Localized state in a two-dimensional quantum walk on a disordered lattice. Phys. Rev. A 92(4), 042316 (2015)

    Article  ADS  Google Scholar 

  56. Karski, M., Förster, L., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Article  ADS  Google Scholar 

  57. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104(15), 153602 (2010)

    Article  ADS  Google Scholar 

  58. Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)

    Article  ADS  Google Scholar 

  59. Bian, Z.H., Li, J., Qin, H., Zhan, X., Zhang, R., Sanders, B.C., Xue, P.: Realization of single-qubit positive-operator-valued measurement via a one-dimensional photonic quantum walk. Phys. Rev. Lett. 114(20), 203602 (2015)

    Article  ADS  Google Scholar 

  60. Hou, Z.B., Tang, J.F., Shang, J.W., Zhu, H.J., Li, J., Yuan, Y., Wu, K.D., Xiang, G.Y., Li, C.F., Guo, G.C.: Deterministic realization of collective measurements via photonic quantum walks. Nat. Commun. 9, 1414 (2018)

    Article  ADS  Google Scholar 

  61. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  62. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  63. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  64. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791–794 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quant. Inf. Proc. 16(9), 221 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ding, X., He, Y., Duan, Z.C., Gregersen, N., Chen, M.C., Unsleber, S., Maier, S., Schneider, C., Kamp, M., Höfling, S., Lu, C.Y., Pan, J.W.: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116(2), 020401 (2016)

    Article  ADS  Google Scholar 

  67. He, Y.M., Liu, J., Maier, S., Emmerling, M., Gerhardt, S., Davanço, M., Srinivasan, K., Schneider, C., Höfling, S.: Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4(7), 802–808 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC)(11274010) and the personnel department of Anhui Province. NP acknowledges the support of SQIG–Security and Quantum Information Group, under the Project UID/EEA/50008/2019, IT Project QbigD funded by FCT PEst-OE/EEI/LA0008/2013 and the Project QuantumMining POCI-01-0145-FEDER-031826 funded by FCT through national funds, by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020), and by Regional Operational Program of Lisbon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, L., Yang, M., Paunković, N. et al. Creating photonic GHZ and W states via quantum walk. Quantum Inf Process 18, 176 (2019). https://doi.org/10.1007/s11128-019-2293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2293-7

Keywords

Navigation