Skip to main content
Log in

Direct entanglement measurement of Werner state with cavity-assisted spin–photon interaction system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate two schemes of direct concurrence measurement for two-qubit spin Werner states via the cavity-assisted interaction between single-photon pulses and nitrogen-vacancy centers in diamond. The first scheme requires multiple copies of initial Werner states but has no need of sophisticated controlled-NOT gate. The second scheme, as a resource-conserving one, adopts a kind of hybrid controlled-NOT gate between spin and photonic qubits but only needs one single copy of initial states. Both schemes get the concurrence in nondestructive ways, and the initial entangled states can be possessed by spatially separated participants. The final analyses show that the presented schemes are feasible under current experimental conditions and have reliable performance with imperfect initial parameters and operating processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  7. Gisin, N., Bechmann-Pasquinucci, H.: Bell inequality, Bell states and maximally entangled states for n qubits. Phys. Lett. A 246, 1–6 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Non-maximally entangled states: production, characterization and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999)

    Article  ADS  Google Scholar 

  9. Ye, M.-Y., Zhang, Y.-S., Guo, G.-C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  10. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A. 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  13. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  14. Gühnea, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2005)

    Article  ADS  Google Scholar 

  16. Horodecki, P., Ekert, A.: Method for direct detection of quantum entanglement. Phys. Rev. Lett. 89, 127902 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed multipartite quantum states. Phys. Rev. Lett. 95, 260502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cai, J.M., Song, W.: Novel schemes for directly measuring entanglement of general states. Phys. Rev. Lett. 101, 190503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)

    Article  ADS  Google Scholar 

  20. Zhang, L.H., Yang, Q., Yang, M., Song, W., Cao, Z.L.: Direct measurement of the concurrence of two-photon polarization-entangled states. Phys. Rev. A 88, 062342 (2013)

    Article  ADS  Google Scholar 

  21. Zhang, L.H., Yang, M., Cao, Z.L.: Directly measuring the concurrence of atomic two-qubit states through the detection of cavity decay. Eur. Phys. J. D 68, 109 (2014)

    Article  ADS  Google Scholar 

  22. Zhang, L.H., Yang, M., Cao, Z.L.: Direct measurement of the concurrence for two-photon polarization entangled pure states by parity-check measurements. Phys. Lett. A 377, 1421 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Romero, G., López, C.E., Lastra, F., Solano, E., Retamal, J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007)

    Article  ADS  Google Scholar 

  24. Yang, R.C., Lin, X., Huang, Z.P., Li, H.C.: Simple scheme for directly measuring concurrence of two-qubit pure states in one step. Commun. Theor. Phys. 51, 252 (2009)

    Article  ADS  Google Scholar 

  25. Lee, S.M., Ji, S.W., Lee, H.W., Zubairy, M.S.: Proposal for direct measurement of concurrence via visibility in a cavity QED system. Phys. Rev. A 77, 040301(R) (2008)

    Article  ADS  Google Scholar 

  26. Zhou, L., Sheng, Y.B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17, 4293–4322 (2015)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  29. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236–4239 (2000)

    Article  ADS  Google Scholar 

  30. Shor, P.W., Smolin, J.A., Terhal, B.M.: Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled werner states. Phys. Rev. Lett. 86, 2681 (2001)

    Article  ADS  Google Scholar 

  31. Chen, K., Albeverio, S., Fei, S.M.: Concurrence-based entanglement measure for Werner States. Rep. Math. Phys. 58, 325 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gao, X.H., Sergio, A., Chen, K., Fei, S.M., Li-Jost, X.Q.: Entanglement of formation and concurrence for mixed states. Front. Comput. Sci. China 2, 114 (2008)

    Article  Google Scholar 

  33. Zeng, T., Chu, W.-J., Yang, Q., Yang, M., Song, W., Cao, Z.-L.: Scheme for directly measuring the concurrences of Collins–Gisin and Werner classes polarization entangled mixed states. Quantum Inf. Process 16, 262 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Meier, F., Levy, J., Loss, D.: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003)

    Article  ADS  Google Scholar 

  35. Weimer, H., Yao, N.Y., Lukin, M.D.: Collectively enhanced interactions in solid-state spin qubits. Phys. Rev. Lett. 110, 067601 (2013)

    Article  ADS  Google Scholar 

  36. Li, H.-O., Cao, G., Yu, G.-D., Xiao, M., Guo, G.-C., Jiang, H.-W., Guo, G.-P.: Controlled quantum operations of a semiconductor three-qubit system. Phys. Rev. Appl. 9, 024015 (2018)

    Article  ADS  Google Scholar 

  37. Liu, J., Zhou, L., Sheng, Y.B.: Direct measurement of the concurrence for two-qubit electron spin entangled pure state base on charge detection. Chin. Phys. B 24, 070309 (2015)

    Article  ADS  Google Scholar 

  38. Dong, P., Liu, J., Zhang, L.H., Cao, Z.L.: Direct measurement of the concurrence of spin-entangled states in a cavity quantum dot system. Physica B 495, 50 (2016)

    Article  ADS  Google Scholar 

  39. Cheng, L.Y., Yang, G.H., Guo, Q., Wang, H.F., Zhang, S.: Direct measurement of nonlocal entanglement of two-qubit spin quantum states. Sci. Rep. 6, 19482 (2016)

    Article  ADS  Google Scholar 

  40. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  Google Scholar 

  41. Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J.R., Stavrias, N., Greentree, A.D., Prawer, S., Meijer, J., Twamley, J., Hemmer, P.R., Wrachtrup, J.: Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006)

    Article  Google Scholar 

  42. Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009)

    Article  ADS  Google Scholar 

  43. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an opticalphoton and a solid-state spin qubit. Nature (London) 466, 730–734 (2010)

    Article  ADS  Google Scholar 

  44. Yang, W.-L., Yin, Z.-Q., Xu, Z.-Y., Feng, M., Du, J.-F.: One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl. Phys. Lett. 96, 241113 (2010)

    Article  ADS  Google Scholar 

  45. Li, P.-B., Gao, S.-Y., Li, F.-L.: Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011)

    Article  ADS  Google Scholar 

  46. Wang, C., Zhang, Y., Jiao, R., Jin, G.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252–19260 (2013)

    Article  ADS  Google Scholar 

  47. santori, C., Fattal, D., Spillane, S.M.: Coherent population trapping in diamond N-V centers at zero magnetic field. Opt. Express 14, 7986–7994 (2006)

    Article  ADS  Google Scholar 

  48. Maze, J.R., Gali, A., Togan, E., Chu, Y., Trifonov, A., Kaxiras, E., Lukin, M.D.: Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13, 025025 (2011)

    Article  ADS  Google Scholar 

  49. Chen, Q., Yang, W.-L., Feng, M., Du, J.-F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  50. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  Google Scholar 

  51. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    Article  ADS  Google Scholar 

  52. Cheng, L.-Y., Wang, H.-F., Zhang, S.: Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond. J. Opt. Soc. Am. B 30, 1821–1826 (2013)

    Article  ADS  Google Scholar 

  53. Barclay, P.E., Fu, K.-M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009)

    Article  ADS  Google Scholar 

  54. Duan, L.-M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  55. Zheng, A., Li, J., Yu, R., Lü, X.-Y., Wu, Y.: Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process. Opt. Express 20, 16902–16912 (2012)

    Article  ADS  Google Scholar 

  56. Park, Y.-S., Cook, A.K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075 (2006)

    Article  ADS  Google Scholar 

  57. Hijlkema, M., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Rempe, G.: A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  58. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. (61801280, 11747130, 11604190, 61465013) and the Applied Fundamental Research projects of Shanxi Province under Grant No. 201801D221015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Yong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LY., Guo, Q., Wang, HF. et al. Direct entanglement measurement of Werner state with cavity-assisted spin–photon interaction system. Quantum Inf Process 18, 214 (2019). https://doi.org/10.1007/s11128-019-2312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2312-8

Keywords

Navigation