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Violation of Mermin’s and Svetlichny’s inequalities can rule out the predictions of local hidden
variable theory and can confirm the existence of true nonlocal correlation for n-particle pure quan-
tum systems (n≥3). Here we demonstrate the experimental violation of the above inequalities for
W- and GHZ-class of states. We use IBM’s five-qubit quantum computer for experimental imple-
mentation of these states and illustration of inequalities’ violations. Our results clearly show the
violations of both Mermin’s and Svetlichny’s inequalities for W and GHZ states respectively. Being
a superconducting qubit-based quantum computer, the platform used here opens up the opportunity
to explore multipartite inequalities which is beyond the reach of other existing technologies.

I. INTRODUCTION

Both Bell’s inequality [1] and the CHSH inequality [2]
were formulated for two particles, to distinguish between
non local hidden variable theory and quantum mechanics.
Clauser and Stuart [3] and Aspect et al. [4] through ex-
perimental Bell tests proved the predictions of quantum
mechanics to be true using entangled photons. With the
advancement of optical systems, Hesen et al. reported
loopholes free experimental test of Bell inequalities [5].
Recent development in the theoretical and experimental
study of Bell’s theorem can be found from the review
article of Brunner et al. [6].

Mermin inequalities [7] are the extended Bell type in-
equalities derived for n particles (n ≥ 3), to test nonlo-
cal quantum correlations between the entangled particles.
Violation of these Bell type inequalities can characterize
maximally entangled states [8]. However, the fact that
violation of these can confirm true nonseparability of the
particles is limited to only two particle case. Hence for a
multi-particle system (n ≥ 3) maximal violation of Mer-
min’s inequality alone cannot predict existence of true
nonlocal correlation between the particles. Instead one
can think of a model where violation of these inequalities
can successfully explain m particle nonlocal correlation
(m< n) and local correlation with the rest for a n-particle
state. This was first suggested by Svetlichny [9]. Later
Svetlichny extended his idea in the form of an inequal-
ity for three particle case, violation of which not only
confirms the existence of three particle entanglement but
also true for three particle nonlocality, which has been
generalized to n particles [10, 11].

For a particular case of three particles, there are two
important class states, GHZ and W-state. These two
states are non convertible to each other under local op-
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erations and classical communications [12]. The max-
imally entangled GHZ state [13, 14] has been used in
quantum key distribution [15], quantum cheque demon-
stration [16], superdense coding [17] etc. On the other
hand the W-state [12] is found to be robust in main-
taining entanglement against particle loss and its appli-
cations are seen in quantum teleportation [18], quan-
tum secure communication [19], and quantum cloning
machines [20] etc. Hence study of quantum correlation
for these states plays a key role in quantum informa-
tion theory. Alsina and Latorre have reported the viola-
tion of Mermin’s inequality for different classes of GHZ
states [21] using IBM’s cloud computing platform. Ex-
perimental violation of Svetlichny’s inequality has been
explicated for three-photon GHZ states using photonic
system [22]. Quantum correlations such as quantum
contextuality, Leggett–Garg temporal correlations, and
quantum discord have been studied in NMR Systems [23].
However, investigation of these inequalities for GHZ- and
W-class of states in the current technology of supercon-
ducting quantum chip explores a new opportunity to
experimentally realize. Here we show the violation of
Svetlichny’s inequality (SI) for a three- qubit GHZ state
along with the violation of Mermin’s inequality (MI) for
three-qubit W-class state using IBM’s quantum com-
puter. The advantage of using IBM’s superconducting
qubit-based quantum computer is that other multipar-
tite inequalities can be easily tested and verified which
is hard and challenging to achieve using other existing
technologies.

IBM Q is a superconducting qubit based operating sys-
tem which offers open global access to a wide class of re-
searchers and has found significant applications in an user
friendly interface [24]. Violation of CHSH inequality [24]
and Mermin’s inequality for GHZ state [21], experimen-
tal realization of quantum cheque [16], demonstrations of
non-Abelian braiding of Majorana modes [25], verifica-
tion of quantum algorithms [27, 28], testing error correc-
tion codes [26, 29], building of a quantum repeater [30],
quantum simulation [31, 32], fidelity improvement [33]
are the examples of a few tasks which have been imple-
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mented successfully.
The rest of the paper is organized as follows. Sec-

tion II discusses violation of Mermin’s inequality for W-
state and illustrates its experimental realization. Section
III explicates the violation of Svetlichny’s inequality for
GHZ state with experimental demonstration. Results are
then presented and discussed in Section IV. We finally
conclude in Section V providing future directions of the
present work.

II. VIOLATION OF MERMIN’S INEQUALITY
FOR W-STATE

One of the Mermin’s inequality for three particles is of
the following form [34],

|M | = |E(ABC)− E(AB′C ′)− E(A′B′C)

−E(A′BC ′)| ≤ 2
(1)

where A(A′), B(B′) and C(C ′) are arbitrary possible
choice of measurements on particles 1, 2 and 3 respec-
tively. The outcomes of all these measurements can ei-
ther be +1 or -1. Our verification process is based on the
calculation of correlation functions, e.g. E(ABC). The
observable E(ABC) represents the expectation value of
joint probability of outcomes of the measurements A, B,
and C on particles 1, 2 and 3 respectively. Calculation of
all such terms appearing in Eq. (1) leads to the calcula-
tion of Mermin’s polynomial. The value of which is then
compared to the value predicted with local realism. Here,
we show the violation of the above mentioned Mermin’s
inequality using a maximally entangled W-state. The W-
state we have considered, is represented in Eq. (2) and
generation of the same is shown in Fig. 1 (a).

|W 〉 =
1√
3

(|100〉+ |010〉+ |001〉) (2)

In the domain of quantum mechanics, these measure-
ments can be regarded as spin measurements and are
specified by linear combination of Pauli spin operators.
By restricting the choice of spin measurements to XZ
plane only, the quantum mechanical expectation value of
the first term of the R.H.S of Eq. (1) can be calculated
for the W state as,

EW (ABC) = 〈W |σ(n̂1)⊗ σ(n̂2)⊗ σ(n̂3)|W 〉

= −2

3
cos(θ1 + θ2 + θ3)− 1

3
cosθ1cosθ2cosθ3,

(3)

where θi(θ
′
i) are polar angles specifying the measure-

ment direction n̂i(n̂
′
i). Following the above expression,

other terms of the inequalities can also be calculated.
For the choice of measurements θ1 = θ2 = θ3 = 1

3nπ
(n=0, ±1, ±2,...) and θ′i=θi+π/2, the value of Mermin’s
polynomial (|M |) represented in Eq. (1) is calculated

(a)

(b)

FIG. 1. (a) Circuit for implementation of maximally entan-
gled W-state represented in Eq. (2). (b) Execution of the
measurement for the expectation value of E(A′BC′) on W-
state.

to be 3. This value is more than the classical bound of
Mermin’s polynomial predicted by local hidden variable
(LHV) theory.

To execute this task in IBM QE, we set the polar angles
θ1 = θ2 = θ3=0 and θ′1 = θ′2 = θ′3 = π/2 for which the
measurement direction for the unprimed and the primed
ones become Z and X respectively. The measurements
along Z and X are similar to previously known σz and
σx measurements in IBM QE platform respectively. For
convenience, the implementation of one of the measure-
ments (E(A′BC ′)) is shown in Fig. 1 (b).

Due to symmetry of the terms used in the inequal-
ity (E(AB′C ′), E(A′B′C) and E(A′BC ′)) under parti-
cle exchange, only one experiment on behalf of three has
been executed as all of them would have obtained similar
results. For calculation of Mermin’s polynomial experi-
ments related to two different measurements (ABC and
A′BC ′) are run, each for 1024 times. The output of the
measurements are listed in Table II.

Further proceeding to the calculation of Mermin’s
polynomial these probability outcomes need to be trans-
lated in terms of expectation values. This can be done
in arranging the result in groups according to the parity
of the number 1 (which has a value -1). The expectation
values are then calculated by adding all probabilities of
even parities (i.e. 000, 011, 101, 110) and subtracting the
results of odd parities from them. With the above shown
result the values of E(ABC) and E(A′BC ′) are calcu-
lated to be -0.758 and 0.561 respectively. Hence value
of the polynomial represented in Eq. (1) is calculated to
be 2.441. This shows the clear violation of the classical
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TABLE I. Outcome of the results with their correspond-
ing probabilities of ABC and A′BC′ measurements. These
probabilities are then converted to expectation values with
which the Mermin’s polynomial can be calculated as, |M | =
|E(ABC)− 3E(A′BC′)|.

Outcomes Probabilities
for ABC

Probabilities
for A′BC′

000 0.077 0.363
001 0.286 0.030
010 0.268 0.074
011 0.015 0.081
100 0.286 0.065
101 0.021 0.240
110 0.008 0.096
111 0.039 0.050

bound predicted by LHV theory for Mermin’s inequality.

III. VIOLATION OF SVETLICHNY’S
INEQUALITY FOR GHZ STATE

The Svetlichny’s inequality for three particles [34] is
represented below in Eq. (4). This inequality can be
treated similar to the extended Bell type inequalities
which would contain terms of both M and M ′. M ′ is
another form of Mermin’s inequality which can be ob-
tained by taking primes of terms presented in Eq. (1).
For three particles there exist particular set of measure-
ments for which MIs are maximally violated. However,
these measurements may not violate SI i.e. such measure-
ment settings may be used to check two particle nonlo-
cality but three particle nonlocality tests may not be ver-
ified [34]. Our focus is on particular set of measurements
using which SI can be violated. If violation of SI occurs,
existence of both three particle entanglement and three
particle nonlocality can be verified. We have considered
here the case of three-qubit maximally entangled GHZ
state (represented in Eq. (5)) to do experiment with,
whose generation along with measurements is shown in
Fig. 2.

|Sv| = |E(ABC) + E(ABC ′) + E(AB′C) + E(A′BC)

−E(A′B′C ′)− E(A′B′C)− E(A′BC ′)− E(AB′C ′)| ≤ 4
(4)

|GHZ〉 =
1√
2

(|000〉+ |111〉) (5)

Mapping the measurements to linear combination of
Pauli matrices and restricting the spin measurements
in XY plane only, the calculated expectation value of
E(ABC) is given by,

(a)

(b)

FIG. 2. Circuit implementation for (a) ABC and (b) ABC′

measurements on GHZ state respectively.

EGHZ(ABC) = 〈GHZ|σ(n̂1)⊗ σ(n̂2)⊗ σ(n̂3)|GHZ〉
= cos(φ1 + φ2 + φ3),

(6)
where φi are the azimuthal angles specifying different

direction of measurements in XY plane. For the choices
φ1 + φ2 + φ3=(n+ 3

4π), where (n=0,±1,±2,...) and φ′i=
φi+π/2, the value of Svetlichny operator is algebraically

calculated to be 4
√

2 [34]. This is the maximum value of
the operator predicted by quantum mechanics whereas
according to local realism |Sv| ≤4.

To execute this task in IBM’s five-qubit quantum chip
‘ibmqx4’, we consider φ1=φ2=0, φ3= 3

4π, φ′1=φ′2 = π/2

and φ′3 = 5
4π. These values set the direction of mea-

surements A,B,A′ and B′ as X, X, Y and Y direction
respectively. Measurement in these directions are same
as taking σx, σx, σy and σy measurements in IBM quan-
tum computer respectively. Similarly with the values of
φ3 and φ′3, the measurement directions C,C ′ becomes

(Y −X)/
√

2 and -(X + Y )/
√

2 respectively. To measure
spins in these directions we have to use additional single
qubit gates T, T†, S and S†. For convenience, the mea-
surement schemes for ABC and ABC ′ are shown in Fig.
2.

For eight different terms appearing in Eq. (4), eight
different measurements are run in ibmqx4. Each mea-
surement was executed 1024 times. The outcome of the
measurements are presented in Table II. Following the
same procedure as described in Section II for Mermin’s
inequality, the probabilities are translated to expecta-
tion values. The Svetlichny’s operator with the values
obtained from experimental results, is calculated to be
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TABLE II. Outcome of the result and their corresponding probabilities of all sets of measurements on GHZ state.

Outcomes ABC ABC′ AB′C A′BC A′B′C A′B′C′ A′BC′ AB′C′

000 0.079 0.082 0.093 0.085 0.208 0.188 0.213 0.248
001 0.175 0.188 0.214 0.159 0.068 0.066 0.052 0.063
010 0.208 0.207 0.174 0.174 0.062 0.063 0.046 0.064
011 0.051 0.032 0.036 0.033 0.153 0.139 0.151 0.159
100 0.216 0.192 0.193 0.223 0.080 0.104 0.089 0.074
101 0.054 0.056 0.058 0.062 0.204 0.190 0.202 0.168
110 0.040 0.066 0.053 0.082 0.182 0.218 0.212 0.189
111 0.178 0.176 0.180 0.183 0.043 0.031 0.035 0.033
Total -0.553 -0.527 -0.521 -0.477 0.494 0.471 0.556 0.530

4.129. As local realism sets a bound of 4 for this oper-
ator, our experimental result clearly shows the violation
of Svetlichny’s inequality.

IV. RESULTS AND DISCUSSION

The three particle states fall into two distinct cat-
egories, GHZ and W-state [12] from the perspective
of teleportation. GHZ state, unitarily connected with
the modified W-state shows stronger nonlocality than
Bell states [35]. It therefore imperative to test the
nature of quantum correlation of these two distinct
cases. Violation of Mermin’s inequality is regarded as a
test of nonseparability of particles for a pure quantum
state. Alsina and Latorre have shown violation of
Mermin’s inequality for three-, four- and five-qubit
GHZ states [21]. Here we have shown violation of
Mermin’s inequality for a three-qubit W-state. For
three particles, violation of only Mermin’s inequality
do not provide the true test for non-locality. However,
violation of Svetlichny operator can strongly define the
non-locality between the three entangled particles [9].
Our experimental result for three-qubit GHZ state
obtains a value of 4.129 for Svetlichny’s operator. This
value is more than the value (|Sv| ≤ 4) predicted by
local realism for this operator. Hence our experimental
result is sufficient to show the violation of Svetlichny’s
inequality. A comparison between local realism and
quantum mechanical predicted values of inequalities
with experimentally obtained values for three particles
is shown in Table III . Also one important thing to
consider, the platform we are using is not free from
technical issues which limits us to obtain the ideal value
of the experiment. Such issues include decoherence,
gate errors and readout errors. For two particles, the

experimental results of CHSH inequality [24], obtained
an error about 0.03. However as in our case the number
of particles as well as the number of measurements are
more, the expected error is also more. These results can
further be improved with minimization of decoherence
effect, the gate and readout errors.

TABLE III. Comparison of local realism (LR) and quantum
mechanics (QM) predicted values of Mermin inequality and
Svetlichny inequality with experimentally obtained results for
three particle states.

Inequalities LR QM Experiment
MI 2 4 2.441

SI 4 4
√

2 4.129

V. CONCLUSION

In conclusion we have shown the violations of Mermin’s
and Svetlichny’s inequality for three-qubit W-state and
GHZ states respectively using IBM’s cloud computing
platform. Our experimental results clearly show the vio-
lation to that of the values predicted by local realism for
these inequalities. The SI test can further be performed
for more number of qubits as a test of multi-particle non-
local correlations.
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