Skip to main content
Log in

A layered quantum communication path protocol cross multiple participants based on entanglement swapping

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement provides a contemporary secure channel for information communication, and the entanglement swapping builds newly entanglement on the previous isolate particles without direct interaction. In the paper, a novel-layered quantum communication path protocol cross multiple participants based on entanglement swapping is proposed, in which the communication path from sender to receiver across multiple intermediate nodes is constructed, and the constructed quantum channel is served for the information exchange. The present protocol can transmit message from sender to receiver via entanglement swapping. The presented protocol is useful for long-distance quantum information communication, significant to quantum network design and plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Friis, N., Marty, O., Maier, C., Hempel, C., et al.: Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 0212012 (2018)

    Google Scholar 

  2. Wang, X.L., Luo, Y.H., Huang, H.L., Chen, M.C., et al.: 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120(260502), 1–8 (2018)

    Google Scholar 

  3. Heinosaari, T.: Simultaneous measurement of two quantum observables: compatibility, broadcasting, and in-between. Phys. Rev. A 93(4), 042118 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Haapasalo, E., Heinosaari, T., Miyadera, T.: The unavoidable information flow to environment in quantum measurements. J. Math. Phys. 59(8), 082106 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hou, K., Liu, G.-H., Zhang, X.-Y., Sheng, S.-Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  9. Liu, Z.H., Chen, H.W., Liu, W.J.: Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theor. Phys. 55(10), 4564–4576 (2016)

    Article  Google Scholar 

  10. Du, Z., Li, L.: Robust high capability QKD-based database private query. Int. J. Theor. Phys. 58(2), 391–398 (2019)

    Article  Google Scholar 

  11. Du, G., Shang, T., Liu, J.: Quantum coordinated multi-point communication based on entanglement swapping. Quantum Inf. Process. 16, 116 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Xu, L., Zhao, Z., Liu, J.: Quantum private comparison protocol based on the entanglement swapping between \(x+\) state and W-Class state. Quantum Inf. Process. 16, 302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xie, C., Liu, Y., Xing, H., Chen, J., Zhang, Z.: Quantum correlation swapping. Quantum Inf. Process. 14(2), 653–679 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15(6), 2593–2603 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55, 3454–3466 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wang, Z.: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process. 12, 1321–1334 (2013)

    Article  ADS  Google Scholar 

  17. Zhan, Y., Ma, P.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997–1009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  19. Liu, Z.-H., Chene, H.-W.: Cryptanalysis and improvement of efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 16, 229 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Su, X., Tian, C., Deng, X., Li, Q., et al.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. 117(240503), 1–5 (2016)

    Google Scholar 

  21. Zhan, Y., Fu, H., Li, W., Ma, P.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)

    Article  MathSciNet  Google Scholar 

  22. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Asymmetric bidirectional controlled remote preparation of an arbitrary four-qubit cluster-type state and a single-qubit state. Quantum Inf. Process. 16, 308 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, Z.-H., Shu, L., Mo, Z.-W., Zheng, J., Ma, S.-Y., Luo, M.-X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 16, 205 (2017)

    Article  ADS  Google Scholar 

  26. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)

    Article  MathSciNet  Google Scholar 

  27. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 177901 (2001)

    Article  ADS  Google Scholar 

  28. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)

    Article  ADS  Google Scholar 

  29. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)

    Article  Google Scholar 

  30. Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73, 062301 (2006)

    Article  ADS  Google Scholar 

  31. Hughes, R.J., Nordholt, J.E., Derkacs, D.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 3283–3286 (2002)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61672279.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Li, X. A layered quantum communication path protocol cross multiple participants based on entanglement swapping. Quantum Inf Process 18, 226 (2019). https://doi.org/10.1007/s11128-019-2336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2336-0

Keywords

Navigation