Skip to main content
Log in

Efficient quantum steganography scheme using inverted pattern approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Capacity and invisibility are two targets of the methods for quantum image steganography. To hide large messages into the quantum cover image and remain invisible is still a challenge. In this paper, we propose an efficient quantum image steganography scheme, which can be finalized by applying an optimal pixel adjustment process to the quantum secret image (constructed by k binary images) before it is embedded. In particular, each pixel of quantum secret image will be inverted or not inverted before it is embedded. The decisions are recorded by a quantum key image for extracting data. Then, it is accomplished by embedding the quantum secret image into the k least significant bits of the quantum cover image using the basic quantum gates and composite quantum modules. Because all quantum operations are invertible, the extraction procedure is the inverse of the embedding procedure. Obviously, since the value of k can be changed, the proposed quantum steganography scheme can provide variable embedding capacity. Numerical simulation and theoretical analysis have shown that our method has outperformed other similar schemes in terms of the visual quality and embedding capacity. In addition, it also provides a lower computational complexity than its classical counterpart and other quantum steganography schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). https://doi.org/10.1007/BF02650179

    Article  MathSciNet  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM symposium on the Theory of Computing, pp. 212–219 (1996)

  4. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, pp. 39–44 (2003)

  5. Venegas-Addraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011). https://doi.org/10.1007/s11128-010-0177-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013). https://doi.org/10.1007/s11128-013-0567-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Li, H.-S., Zhu, Q., Zhou, R.-G., Li, M., Song, L., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. (Ny) 273, 212–232 (2014). https://doi.org/10.1016/j.ins.2014.03.035

    Article  Google Scholar 

  9. Li, H.-S., Fan, P., Xia, H.-Y., Peng, H., Song, S.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 99, 1–14 (2018). https://doi.org/10.1109/tcsi.2018.2853655

    Article  Google Scholar 

  10. Yao, X.W., Wang, H., Liao, Z., Chen, M.C., Pan, J., Li, J., Zhang, K., Lin, X., Wang, Z., Luo, Z., Zheng, W., Li, J., Zhao, M., Peng, X., Suter, D.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7, 031041 (2017). https://doi.org/10.1103/PhysRevX.7.031041

    Article  Google Scholar 

  11. Yang, Y.-G., Tian, J., Lei, H., Zhou, Y.-H., Shi, W.-M.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inf. Sci. (NY) 345, 257–270 (2016). https://doi.org/10.1016/j.ins.2016.01.078

    Article  Google Scholar 

  12. Luo, G.-F., Zhou, R.-G., Hu, W.-W.: Novel quantum secret image sharing scheme. Chin. Phys. B 28, 040302 (2019). https://doi.org/10.1088/1674-1056/28/4/040302

    Article  ADS  Google Scholar 

  13. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017). https://doi.org/10.1142/S0219749917300017

    Article  MathSciNet  MATH  Google Scholar 

  14. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. (NY) 186, 126–149 (2012). https://doi.org/10.1016/j.ins.2011.09.028

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12, 793–803 (2013). https://doi.org/10.1007/s11128-012-0423-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Song, X.H., Wang, S., Liu, S., Abd El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013). https://doi.org/10.1007/s11128-013-0629-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Song, X., Wang, S., Abd El-Latif, A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20, 379–388 (2014). https://doi.org/10.1007/s00530-014-0355-3

    Article  Google Scholar 

  18. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016). https://doi.org/10.1007/s11128-016-1260-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016). https://doi.org/10.1007/s10773-016-3046-3

    Article  MATH  Google Scholar 

  20. Zhou, R.-G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212 (2017). https://doi.org/10.1007/s11128-017-1640-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Li, P., Zhao, Y., Xiao, H., Cao, M.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127–160 (2017). https://doi.org/10.1007/s11128-017-1577-z

    Article  ADS  MATH  Google Scholar 

  22. Naseri, M., Heidari, S., Baghfalaki, M., Fatahi, N., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik (Stuttg) 139, 77–86 (2017). https://doi.org/10.1016/j.ijleo.2017.03.091

    Article  ADS  Google Scholar 

  23. Heidari, S., Gheibi, R., Houshmand, M., Nagata, K.: A robust blind quantum copyright protection for colored images based on owner’s signature. Int. J. Theor. Phys. 56, 2562–2578 (2017). https://doi.org/10.1007/s10773-017-3412-9

    Article  MATH  Google Scholar 

  24. Luo, G., Zhou, R.-G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process. 17, 299 (2018). https://doi.org/10.1007/s11128-018-2075-7

    Article  ADS  MATH  Google Scholar 

  25. Zhou, R.-G., Hu, W., Fan, P., Luo, G.: Quantum color image watermarking based on Arnold transformation and LSB steganography. Int. J. Quantum Inf. 16, 1850021 (2018). https://doi.org/10.1142/S0219749918500211

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, R.-G., Hu, W., Luo, G., Fan, P., Ian, H.: Optimal LSBs-based quantum watermarking with lower distortion. Int. J. Quantum Inf. 16, 1850058 (2018). https://doi.org/10.1142/S0219749918500582

    Article  MATH  Google Scholar 

  27. Luo, G., Zhou, R.-G., Luo, J., Hu, W., Zhou, Y., Ian, H.: Adaptive LSB quantum watermarking method using tri-way pixel value differencing. Quantum Inf. Process. 18, 49 (2019). https://doi.org/10.1007/s11128-018-2165-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moire pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015). https://doi.org/10.1007/s10773-014-2294-3

    Article  MATH  Google Scholar 

  29. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2015). https://doi.org/10.1007/s10773-015-2640-0

    Article  MATH  Google Scholar 

  30. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015). https://doi.org/10.1016/j.measurement.2015.05.038

    Article  Google Scholar 

  31. Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15, 4441–4460 (2016). https://doi.org/10.1007/s11128-016-1411-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Heidari, S., Pourarian, M.R., Gheibi, R., Naseri, M., Houshmand, M.: Quantum red-green-blue image steganography. Int. J. Quantum Inf. 15, 1750039 (2017). https://doi.org/10.1142/S0219749917500393

    Article  MathSciNet  MATH  Google Scholar 

  33. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16, 242 (2017). https://doi.org/10.1007/s11128-017-1694-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sahin, E., Yilmaz, I.: A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quantum Inf. Process. 17, 319 (2018). https://doi.org/10.1007/s11128-018-2092-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Li, P., Lu, A.: LSB-based steganography using reflected gray code for color quantum images. Int. J. Theor. Phys. 57, 1516–1548 (2018)

    Article  MathSciNet  Google Scholar 

  36. Li, P., Liu, X.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16, 1850020 (2018). https://doi.org/10.1142/S021974991850020X

    Article  MATH  Google Scholar 

  37. El-latif, A.A.A., Abd-el-atty, B., Hossain, M.S.: Efficient quantum information hiding for remote medical image sharing. IEEE Access 6, 21075–21083 (2018)

    Article  Google Scholar 

  38. Yang, C.H.: Inverted pattern approach to improve image quality of information hiding by LSB substitution. Pattern Recognit. 41, 2674–2683 (2008). https://doi.org/10.1016/j.patcog.2008.01.019

    Article  MATH  Google Scholar 

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Dong, W., Liu, Z., Zhu, W., Li, S.: Design of quantum comparator based on extended general Toffoli gates with multiple targets (Chinese). Comput. Sci. 39, 302–306 (2012)

    Google Scholar 

  41. Zhou, R.-G., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166 (2018). https://doi.org/10.1007/s11128-018-1921-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

  43. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015). https://doi.org/10.1007/s11128-015-1099-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589–1604 (2015). https://doi.org/10.1007/s11128-014-0843-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jie Hua for providing linguistic assistance during the preparation of this manuscript. This work was supported by the National Key Research and Development Plan (Grant Nos. 2018YFC1200200 and 2018YFC1200205), the National Natural Science Foundation of China (Grant No. 61463016), the “Science and Technology Innovation Action Plan” of Shanghai in 2017 (Grant No. 17510740300), the Scientific Research Fund of Hunan Provincial Education Department (Grant Nos. 18B420 and 18C0796), and the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, G., Zhou, RG. & Hu, W. Efficient quantum steganography scheme using inverted pattern approach. Quantum Inf Process 18, 222 (2019). https://doi.org/10.1007/s11128-019-2341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2341-3

Keywords

Navigation