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Abstract

With a two step optimization method of entanglement
witness, we analytically propose a set of necessary and
sufficient entanglement criteria for four qubit symmetric
Greenberger-Horne-Zeilinger (GHZ) diagonal states. The
criterion set contains four criteria. Two of them are linear
with density matrix elements. The other two criteria are
nonlinear with density matrix elements. The criterion set
has a nest structure. A proper subset of the criteria is
necessary and sufficient for the entanglement of a proper
subset of the states. We illustrate the nest structure of
criterion set with the general Werner state set and its su-
perset the highly symmetric GHZ diagonal state set, they
are subsets of the symmetric GHZ diagonal state set.

PACS number(s): 03.65.Ud; 03.67.Mn;

1 Introduction

Entanglement plays a central role in quantum computa-
tion, quantum simulation and multipartite quantum com-
munication. However, determining whether a given quan-
tum state is entangled or not is by no means easy both
in theoretical and experimental. Many criteria had been
developed to detect entanglement[1][2][3][4][5][6][7][8], see
Ref.[9] and [10] for overviews. A solution to the entan-
glement detection problem, known as entanglement wit-
nessing, relies on the geometry of the set of all sep-
arable quantum states [2],[10]. The method of entan-
glement witness(EW) can easily be extended to multi-
partite cases [11]. Recent developments of the entan-
glement witness based criteria are entanglement witness
for continuous variable system[12], ultrafine entanglement
witness[13],entanglement witness game[14] and separabil-
ity eigenvalue equation[15]. In principle, there exists the
extremal EW[15] such that the entanglement criteria are
necessary and sufficient. Practically, finding a solution to
separability eigenvalue equation is still very difficult in
multipartite scenario. Hence the aim of optimal detect-
ing entanglement in a multipartite system is not easily
reached in general. The proper starting point for such
an aim is to investigate the states that are diagonal in
GHZ basis[16]. GHZ diagonal states as special multi-
partite quantum states arise frequently in quantum in-
formation processing. GHZ diagonal states are tractable
in many theoretical problems such as quantum channel

∗Email:xychen@zjgsu.edu.cn

capacity[17]. Most of multipartite entangled states pre-
pared in experiments are GHZ states. Recently, there
are experiments on four-qubit GHZ states: long-lived four
qubit GHZ states are realized[18], test of irreducible four
qubit GHZ paradox has been produced[19]. When im-
perfects in the preparation and decays are considered, the
states prepared are usually GHZ diagonal states. The rela-
tionship of positive partial transpose (PPT) criterion and
full separability of GHZ diagonal states had been stud-
ied [16] and a simple condition had been given. When
the condition is not fulfilled, the border of full separability
and entanglement may not be uncovered by PPT criterion.
Then a complicated EW would be devised to detect the
border. For three qubit GHZ diagonal states, the EW has
been found [20][21][22] hence the necessary and sufficient
criterion of full separability has been known. For the four
qubit GHZ diagonal states, the full separability criterion
had known for GHZ state mixed with white noise[23][24]
(also known as generalized Werner state [25]). We may
put the criterion in a criterion set C1. Let the set of all
the generalized Werner states to be the state set S1. Then
the criterion set C1 is necessary and sufficient for the full
separability of the state set S1.

To detect the (multipartite) entanglement of multi-qubit
systems (state set SN ), we should consider a hierarchy
of state sets. The sets can be graph diagonal state set
S5, GHZ diagonal state set S4, symmetric GHZ diagonal
state set S3 , highly symmetric GHZ diagonal state set S2,
generalized Werner state set S1. For four qubit system,
we will build the criterion set C3 which is necessary and
sufficient for state set S3 and it is a pretty good necessary
criterion set for larger state set Sj with j ≥ 4. We will
show that C1 ⊂ C2 ⊂ C3 for the state set inclusion relations
S1 ⊂ S2 ⊂ S3.

We use a two steps procedure of finding the proper EW
for a given four qubit GHZ state. The first step is to make
the EW optimal in order to obtain necessary criterion of
full separability, we will illustrate it in section II. The sec-
ond step is to match the optimal EW with the state under
investigation in order to obtain sufficient criterion of full
separability, we will illustrate it in section III. Section IV
and section V are devoted to state sets S2,S3 and their nec-
essary and sufficient criterion sets C2, C3, respectively. We
discuss the relationship of PPT criterion and our criteria
in section VI and conclude in section VII.
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2 Optimal entanglement witness

Suppose there is a composed Hilbert space H = H1⊗· · ·⊗
Hn. A quantum state σ is called fully separable (hereafter
abbreviated as ‘separable’ sometimes), if it can be written
as a classical mixture of product states[26]:

σ =
∑

i

qi|ψ
(i)
1 〉〈ψ

(i)
1 | ⊗ · · · ⊗ |ψ(i)

n 〉〈ψ(i)
n |, (1)

with qi being a classical probability distribution, |ψ
(i)
j 〉 is

a pure state in the Hilbert space Hj . A quantum state is
entangled if it can be written as (1).
A four qubit GHZ diagonal state takes the form

ρ =
16∑

j=1

pj|GHZj〉〈GHZj |, (2)

where pj is a probability distribution. The GHZ state
basis consists of sixteen vectors |GHZj〉 =

1√
2
(|0x2x3x4〉±

|1x2x3x4〉), with xi, xi ∈ {0, 1} and xi 6= xi . In the
binary notation, j − 1 = 0x2x3x4 for the ‘+’ states and
j − 1 = 1x2x3x4 for the ‘-’ states.
A four qubit symmetric GHZ diagonal state takes the

form

ρ = p1|GHZ1〉〈GHZ1|+ p2
∑

j=2,3,5,8

|GHZj〉〈GHZj |

+p16|GHZ16〉〈GHZ16|+ p15
∑

j=9,12,14,15

|GHZj〉〈GHZj |

+p4
∑

j=4,6,7

|GHZj〉〈GHZj |+ p13
∑

j=10,11,13

|GHZj〉〈GHZj |,

with pi ≥ 0 and normalization

p1 + p16 + 4(p2 + p15) + 3(p4 + p13) = 1. (3)

A four qubit highly symmetric GHZ diagonal state in-
vestigated in this paper takes the form

ρ = p1|GHZ1〉〈GHZ1|+ p16|GHZ16〉〈GHZ16|

+p2

8∑

j=2

|GHZj〉〈GHZj |+ p15

15∑

j=9

|GHZj〉〈GHZj | (4)

is a special symmetric GHZ diagonal state with pi ≥ 0 and
normalization

p1 + p16 + 7(p2 + p15) = 1. (5)

A generalized Werner state (A GHZ state mixed with
white noise[25] )

ρW = p|GHZ〉〈GHZ|+
1− p

16
I, (6)

is a special highly symmetric GHZ diagonal state, with
|GHZ〉 = |GHZ1〉 and I being the 16×16 identity matrix.
EW is a Hermite operator Ŵ such that TrρsŴ ≥ 0

for all separable state ρs and TrρŴ < 0 for at least one
entangled state ρ. We may assume Ŵ = ΛI− M̂ , where I

is the identity operator and Λ = maxρs TrρsM̂ such that
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Figure 1: The regions in xy-plane for the maximal mean
of g̃ in xy-plane, here x = M8

M9
, y = M15

M9
. ∆ is bounded

by two straight line sections and two curve sections. The
two line sections are x = 3, y ∈ [−3, 3] and y = 3, x ∈
[−3, 3], respectively. The two curve sections are y = 3 +
1
2 (

9
x
− x), x ∈ [−3,−1] and x = 3+ 1

2 (
9
y
− y), y ∈ [−3,−1],

respectively.

Ŵ is an optimal EW (the equality in TrρsŴ ≥ 0 can be
reached). We may express the multi-qubit state and the
EW with their characteristic functions. Correspondingly,
the operator M̂ is characterized by real parameters Mi

(i = 1, ..., 4n−1) in detecting the entanglement of a n-qubit
state. Here the number of parameters Mi is equal to the
number of free real parameters for describing the density
matrix. One of the widely used numeric method of finding
a proper EW resorts to semi-definite programming. The
procedure of analytically finding a precise EW is divided
into two steps. The first step is to find Λ for the given
Mi. Notice that any operator M̂ corresponds to a valid
EW if Λ is obtained. Hence the first step gives a valid
necessary criterion of separability. The second step is to
adjust the parameters Mi such that the EW detects all
the entanglement. The parameters Mi should match to
the state under consideration, so the second step gives the
sufficient criterion of separability.
The two steps of finding entanglement criterion are just

the two kinds of optimizations. The first step is the max-
imization to obtain Λ (thus optimal EW) for a given set
of parameters Mi. The second step is to optimize with
respect to Mi such that the criterion is tight.
Let M̂ be a Hermitian operator which is a linear combi-

nation of the tensor products of Pauli operators appearing
in the four qubit GHZ diagonal states, namely,

M̂ = M1IIZZ +M2IZIZ +M3IZZI +M4ZIIZ

+M5ZIZI +M6ZZII +M7ZZZZ

+M8XXXX +M9XXY Y +M10XYXY

+M11XY Y X +M12Y XXY +M13Y XYX

+M14Y Y XX +M15Y Y Y Y. (7)

Where X,Y, Z are Pauli matrices, I is the 2 × 2 identity
matrix, Mi are parameters mentioned above.
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The mean of the operator M̂ on the pure product state
|ψ〉 = |ψ1〉|ψ2〉|ψ3〉|ψ4〉 is 〈ψ|M̂ |ψ〉. Where |ψj〉 is a pure
state of the jth qubit, we parameterize it with angles
θj , ϕj , namely, |ψj〉 = cos

θj
2 |0〉+sin

θj
2 e

iϕj |1〉. We may al-

ternatively denote the mean as 〈ψ|M̂ |ψ〉 = f(θ,ϕ), where

f(θ,ϕ) =M1z3z4 +M2z2z4 +M3z2z3 +M4z1z4

M5z1z3 +M6z1z2 +M7z1z2z3z4 + g(ϕ)t1t2t3t4 (8)

with zj = cos θj , tj = sin θj and θ = (θ1, θ2, θ3, θ4),ϕ =
(ϕ1, ϕ2, ϕ3, ϕ4). The function g(ϕ) is defined as

g(ϕ) =M8c1c2c3c4 +M9c1c2s3s4 +M10c1s2c3s4

+M11c1s2s3c4 +M12s1c2c3s4 +M13s1c2s3c4

+M14s1s2c3c4 +M15s1s2s3s4. (9)

with cj = cosϕj , sj = sinϕj . The maximization of the

mean of operator M̂ with respect to product states is
transformed to the maximization of function f(θ,ϕ) with
respect to the angles θj ,ϕj (j=1,..,4). We can see that
the maximization on ϕj is independent of the maximiza-
tion on θj . The structure of the density matrix of GHZ
diagonal states is ’X’ type. The density matrix contains
diagonal and anti-diagonal entries and all the other en-
tries are zeros. In computational basis, the operator M̂
can also be expressed as a matrix containing diagonal and
anti-diagonal entries and all the other entries are zeros.
The function g(ϕ) is responsible for the property of anti-
diagonal part of M̂ .
Denote g̃ = maxϕ g(ϕ). Two of the angles can be re-

moved by obvious optimization of triangle function. After
some algebra, we have g̃ = maxϕ+,ϕ−

g1(ϕ+, ϕ−), with
ϕ± = ϕ1 ± ϕ2, and

g1(ϕ+, ϕ−) =
√
(A1c+ +A3c−)2 + (A5s+ −A7s−)2

+
√
(A2c+ +A4c−)2 + (A6s+ −A8s−)2. (10)

with (A1, A2, A3, A4) = 1
2 (M8,−M9,−M14,M15)H ,

(A5, A6, A7, A8) = 1
2 (M10,M11,M12,M13)H , c± =

cosϕ±, s± = sinϕ±, where H is the 4× 4 Hadamard ma-
trix.
For general parameters Mi(i = 8, ..., 15), it is not obvi-

ous how to remove ϕj from (10) by maximization. Based
on the symmetric consideration, we assume

M9 =M10 =M11 =M12 =M13 =M14. (11)

Although the assumption may limit the entanglement de-
tecting power of the optimal EW derived from operator M̂ .
It greatly simplifies the analysis. The assumption (11) on
the parameters Mi simplifies g1(ϕ+, ϕ−) to

g1 =
√
(A1c+ +A2c−)2 + (A5s+)2 + |A2c+ +A4c−|.

It is not difficult to show that the second derivative of g1
with respect to c− is always non negative. Hence we have

g2(ϕ+) = max
c−

g1(ϕ+, ϕ−) = max{g1|c−=+1, g1|c−=−1}

=
√
(A1c+ +A2)2 + (A5s+)2 + |A2c+ +A4|. (12)

In the last equality, we have merged the c− = ±1 cases
into the sign of c+. Thus g̃ = maxϕ+

g2(ϕ+). The maxi-
mization over ϕ+ can be carried out and we at last have

g̃ =





sign(M9)
9M2

9−M8M15

6M9−M8−M15
, if (M8

M9
, M15

M9
) ∈ ∆;

max{ 1
2 (|M8 +M9|+ |M8 −M9|),

1
2 (|M15 +M9|

+|M15 −M9|)}, otherwise.
(13)

Where ∆ is a region shown in Fig.1.
Denote f1(θ) = maxϕ f(θ,ϕ). by optimizing on θ4 and

denoting f2(θ1, θ2, θ3) = maxθ4 f1(θ), we then have

f2(θ1, θ2, θ3) =M6z1z2 +M5z1z3 +M3z2z3 +√
[M4z1 +M2z2 +M1z3 +M7z1z2z3]2 + (g̃t1t2t3)2. (14)

The maximal mean of the operator M̂ over all prod-
uct states is denoted as Λ = max|ψ〉〈ψ|M̂ |ψ〉 =
maxθ,ϕ f(θ,ϕ) = maxθ1,θ2,θ3 f2(θ1, θ2, θ3). We have the
following lemma:

Lemma 1 In parameter space (M1,M2,M3,M4,M5

,M6,M7)/g̃, there are points Pi(i = 1, ..., 8) with coordi-

nates be (j1, j2,−j1j2, j3,−j1j3,−j2j3, j1j2j3) subjected

to |j1| = |j2| = |j3| = 1. Then inside the polyhedron

(P1, P2, P3, P4, P5, P6, P7, P8) we have

Λ = g̃. (15)

Proof: For each point Pi, a direct calculation shows
that Λ(Pi) = g̃. Notice that f1 is linear with re-
spect to the parameters Mi, (i = 1, ..., 7). So inside
the polyhedron (P1, P2, P3, P4, P5, P6, P7, P8), we have

f1(M1,M2,M3,M4,M5,M6,M7) =
∑8

i=1 pif1(Pi) with
some probability distribution {pi}. Then we have

Λ(M1,M2,M3,M4,M5,M6,M7) ≤
∑8

i=1 piΛ(Pi) = g̃ due
to the fact that each Λ(Pi) may be achieved at its own
special θj variables. On the other hand, we get the
lower bound of Λ(M1,M2,M3,M4,M5,M6,M7) by notic-
ing that f2(θ1 = ±π

2 , θ2 = ±π
2 , θ3 = ±π

2 ) = g̃, so that
Λ(M1,M2,M3,M4,M5,M6,M7) ≥ g̃. Thus (15) follows.
In the outside of the polyhedron, we can have Λ > g̃.

3 Matched entanglement witness

and separable criterion

A four qubit GHZ diagonal state can be written as

ρ =
1

16
(IIII +R1IIZZ +R2IZIZ +R3IZZI

+R4ZIIZ +R5ZIZI +R6ZZII +R7ZZZZ

+R8XXXX +R9XXY Y + R10XYXY

+R11XY Y X +R12Y XXY +R13Y XYX

+R14Y Y XX +R15Y Y Y Y ). (16)

Then TrρM̂ =
∑15

i=1MiRi. Let

L =
Λ

∑15
i=1MiRi

. (17)
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With the convention of
∑15

i=1MiRi > 0, we say the entan-
glement of ρ is detected if L < 1. For all possible optimal
EWs, we want to find an EW with the smallest L. We
will call it matched EW with respect to the given state ρ.
Hence the problem is to minimize L with respect to M̂ .

Lmin = min
M̂

L. (18)

3.1 Matching anti-diagonal elements of

states

In order to minimize L with respect to Mi (i=1,...,15),
we first consider R̃ = max

∑
i=8,...,15MiRi/g̃. Here the

anti-diagonal part of state ρ in (16) is described by Ri
(i=8,...,15). With the assumption (11) and notations x =
M8

M9
, y = M15

M9
, we have R̃ = maxx,y

1
Lg
, where

Lg =
g̃

M9(xR8 + yR15 +R′
9)
. (19)

With R′
9 =

∑14
i=9 Ri. Suppose R′

9 > 0 without loss of
generality, we may choose M9 > 0 to match with the sign
of R′

9. If R8 < 0, we consider the region in the left side
of Fig.1 specified by its boundary lines A′A′′ , D′D′′ and
curve A′D′. In this region, we have g̃ = |M8| = −x|M9|,
then

L−1
g = −R8 +

y

|x|
R15 +

1

|x|
R′

9. (20)

For a given y, the maximum of L−1
g achieves at the re-

gion boundary lines A′A′′ , D′D′′ and curve A′D′. L−1
g

monotonically increases with the decrease of |x| since
R′

9 + yR15 > 0 (we may choose the sign of y to be the
sign of R15. We omit the case R′

9 + yR15 < 0 which gives
rise to a local maximum −R8 for L−1

g when x → −∞).
Along with the lines A′A′′ and D′D′′, L−1

g monotonically
increases with the decrease of |x|. So, we only need to
consider the maximization of L−1

g on curve A′D′. Similar
analyses can be applied to the other regions in Fig.1 ex-
cept region ∆. Thus the region for maximization of L−1

g

can be reduced to ∆ including its boundary. In region ∆,
we have

L−1
g =

(6− x− y)(xR8 + yR15 +R′
9)

9− xy
. (21)

We consider the change of L−1
g on the straight line connect-

ing point C′ and some point in curve A′D′ or curve A′B′.
The equation for such a straight line is y = kx+ 3(1− k).

On the line we have (6−x−y)
9−xy = 1+k

3+kx , thus

L−1
g = (1 + k)(

R8

k
+R15) +

3(1 + k)

3 + kx
(
R′

9

3
−
R8

k
− kR15).

(22)
Notice that k ≥ 0 and in the domain ∆ we can verify that
3 + kx > 0. Hence L−1

g maximizes at point C′ when

R8

k
+ kR15 >

R′
9

3
. (23)

and maximizes at curve B′A′D′ otherwise. A tighter al-
ternative of (23) is

R8R15

R′2
9

>
1

36
. (24)

We further consider the maximization of L−1
g on curve

A′D′. We have the equation of curve A′D′ to be (6−x−y)
9−xy =

− 1
x
from (13), hence

L−1
g = −R8 +

1

2
R15 − (3R15 +R′

9)
1

x
−

9R15

2

1

x2
. (25)

So L−1
g achieves its maximum in curve A′D′ with x =

− 9R15

3R15+R′

9

when

R15

R′
9

>
1

6
. (26)

It achieves its maximum at point A′ otherwise. Sim-
ilarly, L−1

g achieves its maximum in curve A′B′ with

y = − 9R8

3R8+R′

9

when

R8

R′
9

>
1

6
. (27)

It achieves its maximum at point A′ otherwise. The ex-
plicit formula for R̃ (regardless of the sign of R′

9) is

R̃ =





|R′
9 −R8 −R15|, if

R8

R′

9

≤ 1
6 ,

R15

R′

9

≤ 1
6 ;

| 13R
′
9 +R8 +R15|, if

R8R15

R′2
9

≥ 1
36 ;

R8

R′

9

> 0; R15

R′

9

> 0

|R15 −R8 +
1
3R

′
9 +

R′2
9

18R15
|,

if R15

R′

9

> 1
6 ,

R8R15

R′2
9

< 1
36 ;

|R8 −R15 +
1
3R

′
9 +

R′2
9

18R8
|,

if R8

R′

9

> 1
6 ,

R8R15

R′2
9

< 1
36 .

(28)

3.2 Matching diagonal elements of state

The quantity Lmin defined in (18) is

Lmin = min
Mm,m=1,...,7

Λ
∑7

m=1MmRm + g̃R̃
(29)

The parameter space (M1,M2,M3,M4,M5,M6,M7)/g̃
is divided into two parts, one is the outside of polyhedron
(P1, P2, P3, P4, P5, P6, P7, P8), the other is the inside of the
polyhedron (including the boundary). Suppose the point
(N1, N2, N3, N4, N5, N6, N7)/g̃ be on the boundary of the
polyhedron, then

Lboundary = [(
7∑

m=1

NmRm)/g̃ + R̃]−1. (30)

Notice that the origin is inside the polyhedron since
it is the geometrical center of the points P1, ..., P8. Let
δ > 0, then (M1,M2,M3,M4,M5,M6,M7)g̃

−1 = (1 +
δ)(N1, N2, N3, N4, N5, N6, N7)g̃

−1 be a point outside the
polyhedron in the parameter space, we have Λ = (1+ δ)g̃,

L = [(
∑7

m=1NmRm)/g̃+R̃/(1+δ)]−1 > Lboundary. Hence
the minimal L can only be achieved inside the polyhedron.
Let (M1,M2,M3,M4,M5,M6,M7)g̃

−1 = δ(N1, N2, N3,
N4, N5, N6, N7)g̃

−1(1 ≥ δ ≥ 0) be a point inside the poly-
hedron in the parameter space, we have Λ = g̃, thus
L = [δ(

∑7
m=1NmRm)/g̃ + R̃]−1 > Lboundary as far as∑7

m=1NmRm is positive. If
∑7

m=1NmRm is negative, we

have L = R̃−1 = Lorigin. Thus the minimal L is achieved

4



either on the boundary or on the original point of the pa-
rameter space. Notice that L−1

boundary is linear with respect

to the parameter (N1, N2, N3, N4, N5, N6, N7)g̃
−1, hence

the maximal of L−1
boundary is achieved on one of the ex-

tremal points Pi, i = 1, ..., 8. The original point is excluded
since a point with non-negative

∑7
m=1NmRm always ex-

ists on the boundary. In fact, the values of
∑7
m=1NmRm

for points Pi, (i = 1, ..., 8) are 1 − 8(ρi,i + ρ17−i,17−i)(i =
1, ..., 8), respectively. Then we choose the maximum of
1− 8(ρi,i + ρ17−i,17−i) to minimize Lboundary. Thus

Lmin = [1− 8min
i
(ρi,i + ρ17−i,17−i) + R̃]−1. (31)

3.3 Separable criteria

The separable criterion is Lmin ≥ 1. Namely,

min
i
(ρi,i + ρ17−i,17−i) ≥

1

8
R̃, (32)

The separable criteria have an operational meaning of
comparing the anti-diagonal part of the density matrix
(represented by R̃) and the diagonal part of the density
matrix (represented the minimal ρi,i+ρ17−i,17−i). A state
is necessarily separable when its diagonal part is larger
than its anti-diagonal part and it is entangled otherwise.

The simplest separable criterion comes from the first line
of (28) and (32). It is

Criterion I : |ρ1,16| ≤
1

2
min
i
(ρi,i + ρ17−i,17−i), (33)

Criterion I is just the criterion for the generalized Werner
states. In fact it is just the positive partial transpose fully
separable criterion for four qubit GHZ diagonal states. We
may substitute the second lines of (28) and into (32) to
obtain the following criterion.

Criterion II :
1

3
|ρ4,13 + ρ6,11 + ρ7,10| ≤ Ω, (34)

Where

Ω =
1

2
min
i
(ρi,i + ρ17−i,17−i).

The other criteria are

Criterion III: |R15 −R8 +
1

3
R′

9 +
R′2

9

18R15
| ≤ 16Ω, (35)

and

Criterion IV: |R8 −R15 +
1

3
R′

9 +
R′2

9

18R8
| ≤ 16Ω. (36)

We have classified the separable criteria into four types for
the full separability of four qubit GHZ diagonal states. We
will show that two of them are necessary and sufficient for
the full separability of four qubit (highly) symmetric GHZ
diagonal states.

4 Application to highly symmetric

GHZ diagonal states

A four qubit highly symmetric GHZ diagonal state ρ is the
mixture of GHZ basis states with the probabilities:{pi, i =
1, ..., 16} and p2 = p3 = ... = p8; p9 = p10 = ... = p15. The
state is symmetric under interchange of any pair of qubits.
Hence we get four positive parameters p1, p2, p15, p16 with
normalization

p1 + p16 + 7(p2 + p15) = 1. (37)

The nonzero entries of ρ are ρ1,1 = ρ16,16 = 1
2 (p1 + p16);

ρ1,16 = ρ16,1 = 1
2 (p1 − p16); ρ2,2 = ρ3,3 = ... = ρ15,15 =

1
2 (p2 + p15); ρ2,15 = ρ3,14 = ... = ρ15,2 = 1

2 (p2 − p15).
We have numerically calculated the boundaries of sepa-

rable state sets for above states in the cases of p16 = 0, and
p16 = 0.3. We choose p2 and p15 as free parameters and p1
is determined by the normalization (37). The boundaries
are shown in Fig.2. The numeric calculation has rounds of
three steps: (i) to choose Mi randomly (ii) to calculate Λ
(iii)to record the minimal L.
For the convenience of later uses, we list the relevant Rj

below

R7 = R1 = 1− 8(p2 + p15),

R8 = 1− 2p16 − 14p15,

R15 = −R9 = 1− 2p16 − 8p2 − 6p15,

R′
9 = 6R9, R

′
1 = 6R1. We alternatively use parameters

u, v, α for convenience, with u = 1 − 2p16, (p15, p2) =

(vu
α
, (1−v)u

α
), v ∈ [0, 1]. Hence

R8 = u(1−
14v

α
), (38)

R15 = u(1−
8− 2v

α
). (39)

4.1 Necessary criteria

For our four qubit highly symmetric GHZ diagonal state
ρ, we have

Ω = min(ρ1,1, ρ2,2).

Criterion I turns out to be

|p1 − p16| ≤ (p2 + p15) (40)

when p1 + p16 ≥ (p2 + p15). When p1 > p16, the criterion
gives the upper bound of α corresponding to straight line
boundaries GH , PQ and KL in Fig.2, with α = 8. We
have denoted the intersections of the criteria by points
G,H... in the Fig.2. When p1 < p16, the criterion gives the
lower bound of α corresponding to straight line boundary
MN in Fig.2, with α = 6.
Criterion II now is

|p2 − p15| ≤ p1 + p16. (41)

It is

α ≥ u(8− 2v) for v ≤
1

2
(42)

α ≥ u(6 + 2v) for v ≥
1

2
. (43)
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Condition (42) accounts for the line boundary GJ in Fig.2.
Criterion III turns out to be |p2 − p15| ≤ p1 + p16 too.
When p1 + p16 ≥ p2 + p15, criterion IV leads to

v ≥
1

36
[18− α−

√
(α + 42)(α− 6)], (44)

v ≤
1

36
[32− α+

√
(56− α)(8 − α)], (45)

with α ∈ [6, 8]. Inequality (44) gives rise to boundary
curve KN in Fig.2, with

vK = 0; for α = 8; vN =
1

3
for α = 6. (46)

Inequality (45) gives rise to boundary curve LM in Fig.2.
with

vM = 1; for α = 6; vL =
2

3
for α = 8. (47)

The straight line KL then is limited to v ∈ [vK , vL] and
the straight line MN is limited to v ∈ [vN , vM ].
When p1 + p16 ≤ p2 + p15, criterion IV leads to

α ≥ a1 +
√
a21 + b1 for v ∈ [v1, v2], (48)

α ≥ a2 −
√
a22 − b2 for v ∈ [v3, v4], (49)

where a1 = 3u + (7 + u)v, b1 = 4u(4 − 37v + 9v2), a2 =
4u + (7 − u)v, b2 = 4u(3v + 2)2. Here v1 = 1

18 (9 − 4u −√
(4u+ 21)(4u− 3)) and v4 = 2

9 (4−u−
√
(7− u)(1− u))

are determined by condition p1 + p16 = p2 + p15 (namely
α = 8u) and the equality in (44) and (45), respectively.
v2 = 5u−2

3(1+u) and v3 = 4−3u
1+u come from physical boundary

condition p16 + p2 + p15 = 1 (namely α = 14u
1+u ) and the

equality in (48) and (49)), respectively.
It happens that the straight line α = u(6 + 2v) and the

curve α = a2 −
√
a22 − b2 intersect at (v = v3, α = 14u

1+u ).

We can verified that a2 −
√
a22 − b2 > u(6 + 2v) when

v > v3. Thus the inequality (49) is better than inequality
(43) as a separable criterion. We can also show that a1 +√
a21 + b1 > u(8 − 2v), thus inequality (48) is better than

inequality (42) as a separable criterion. We conclude that
criterion II and criterion III are not useful in determining
the separable boundary of four qubit highly symmetric
GHZ diagonal state set. Criterion I and criterion IV suffice
as necessary criterion set for full separability.
When p16 = 0. Inequality (48) turns out to be (42) and

inequality (49) leads to

α = 4 + 6v, for v ∈ [
1

2
,
2

3
], (50)

Equation (50) is just the straight line boundary HJ in
Fig.2. As a criterion, it is better than inequality (43).
The states inside the triangle GHJ are separable due to
the convexity of separable state set.
We have shown the boundaries of fully separable states

for p16 = 0 and p16 = 0.3 in Fig.2, respectively. The figure
for the case of p16 ∈ (0, 18 ) is quite different. As shown
in Fig.2 for p16 = 0.0625, the fully separable state set
has boundary PQSTUV P . Straight line PQ is specified

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

p
15

p 2

G

M

N

L

K

Q

S

T

U

P V

H

J

Figure 2: The numeric calculated boundaries of fully sep-
arable state set of four qubit highly symmetric GHZ diag-
onal states with p16 = 0(GJHG) and p16 = 0.3(KLMNK)
specified by dots. Theoretical results for the boundaries
are displayed with solid lines. The dashed lines are for the
theoretical results of p16 = 0.0625. Criterion I accounts
for straight lines GH , KL, MN and PQ. Criterion IV ac-
counts for straight lines GJ , JH and curvesKN,LM , QS,
ST ,PV and UV . The straight line UT is due to physical
condition p1 = 0.

by α = 8, v ∈ [0, 23 ]. Curve PV (QS) is determined by
the equality in (44)((45)) until it reaches α = 8u with
v = v1(v4). Curve V U (ST ) is determined by the equality
in (48)((49)) until it reaches α = 14u

1+u with v = v2(v3).
Finally the straight line section UT represents the physical
boundary p1 = 0.

4.2 Sufficient criteria

The sufficient condition of separability relies on the ability
of decomposing the state into probability mixture of prod-
uct states. Usually, it is rather technical to write down the
decomposition. For the known operator M̂ , we will find
the product state corresponding to its largest mean Λ and
use it to construct the explicit decomposition of a state ρ
at the boundary of fully separable state set.

4.2.1 Sufficiency of criterion I

In the case of Criterion I, we start by setting M1 =M2 =
... = M6 = 0,M7 = 1,M8 = M15 = −M9 = ±1. We thus
have the operator M̂ = ZZZZ ± (XXXX − XXY Y −
XYXY −XY YX−Y XXY −Y XYX−Y Y XX+Y Y Y Y ).
The EW is I− M̂ . The maximal mean of M̂ over product
state |ψ〉 =

⊗4
i=1 |ψi〉 is

Λ = max
θ,ϕ

[

4∏

i=1

zi ±

4∏

i=1

ti cos(

4∑

j=1

ϕj)] (51)

The maximum is known to be 1 which is achieved
when (i)

∏4
i=1 zi = 1 or (ii)

∏4
i=1 ti = ±1 and∑4

j=1 ϕj = 0. Case (i) corresponds to separable states
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|0000〉, |0011〉, |0101〉, |1001〉, |0110〉, |1010〉, |1100〉, |1111〉.
Case (ii) is realized by separable state

|ψ(ϕ1, ϕ2, ϕ3)〉 =
1

4
[

3⊗

j=1

(|0〉+ eiϕj |1〉)](|0〉 ± e−iΣ
3
j=1ϕj |1〉).

In order to construct the GHZ diagonal states, we may
expand the product state |ψ(ϕ1, ϕ2, ϕ3)〉 with products of
Pauli matrices. Then we will eliminate the unnecessary
terms by the following procedure. Denote ̺1(ϕ1, ϕ2, ϕ3) =
|ψ(ϕ1, ϕ2, ϕ3)〉〈ψ(ϕ1, ϕ2, ϕ3)|. Let k = (k1, k2, k3) ∈
{0, 1}⊗3, denote

̺2(ϕ1, ϕ2, ϕ3) =
1

8
Σk̺1(ϕ1 + k1π, ϕ2 + k2π, ϕ3 + k3π)

̺3(ϕ) =
1

2
[̺2(ϕ, ϕ, ϕ) + ̺∗2(ϕ, ϕ, ϕ)]

The density matrix ̺2(ϕ1, ϕ2, ϕ3) is already in ’X’ shape,
all its entries are nullified except diagonal and anti-
diagonal entries. The real density matrix ̺3(ϕ) is

1

16
IIII ±

1

16
[cos 3ϕ cos3 ϕXXXX − sin 3ϕ sin3 ϕY Y Y Y

+cos 3ϕ cosϕ sin2 ϕ(XY YX + Y XYX + Y Y XX)

− sin 3ϕ sinϕ cos2 ϕ(XXY Y +XYXY + Y XXY )]

The permutational symmetry of the state requires
cos 3ϕ cosϕ sin2 ϕ = − sin 3ϕ sinϕ cos2 ϕ. It leads to ϕ =
iπ
4 , with i = 0, ..., 7. We obtain independent separable
states ̺3(0), ̺3(

π
4 ), ̺3(

π
2 ). A mixture of these states will

give rise to

̺4 = (1− q1 − q2)̺3(0) + q1̺3(
π

4
) + q2̺3(

π

2
).

Where 0 ≤ q1, q2 ≤ 1; q1 + q2 ≤ 1. Then a state on line
sections GH ,KL PQ in Fig.2 can be written as

ρ = u̺4 + p16(|0000〉〈0000|+ |1111〉〈1111|), (52)

where ‘+’ is chosen from ‘±’ for state ̺4. We then have

R8 = u(1−
5

4
q1 − q2), R9 = u(−

1

4
q1), R15 = u(q2 −

1

4
q1).

(53)
Noti ce that R15 = −R9, so q2 = 1

2q1. Hence q1 ≤ 2
3 .

Comparing Ri with their expressions of parameters (α =
8, v). We have v = q1,

0 ≤ v ≤
2

3
, (54)

for the states on the line sections GH and KL.
A state on line section MN in Fig.2 can be written as

ρ = (1 − 2p1)̺4 + p1(|0000〉〈0000|+ |1111〉〈1111|), (55)

where ‘−’ is chosen from ‘±’ for state ̺4. We compare Ri
obtained from (55) with their expressions of parameters
(α = 6, v). We have v = 1− q1,

1

3
≤ v ≤ 1, (56)

for the states on the line section MN .
The sufficient conditions for the full separability of the

states on straight line sections KL,MN,GH are proven.
The sufficient conditions of criterion I coincide with the
necessary conditions. So criterion I is necessary and suf-
ficient for the full separability of states on straight line
sections KL,MN,GH .
The general Werner state is a special highly symmet-

ric GHZ diagonal state, with p2 = ... = p15 = p16 and
p = p1 − p2 > 0. Criterion I reads p ≤ 1

9 . It is the
necessary and sufficient criterion of full separability for
the general Werner states[21][24]. Thus the criterion set
C1={Criterion I} is necessary and sufficient for the full
separability of the states in the general Werner state set
S1.

4.2.2 Sufficiency of criterion IV

The solutions to the maximization of (12) are s+ = 0 and
c+ = A2

1−A1
= M8−M15

6M9−M8−M15
. The later leads to the first

line of (13) for g̃. The corresponding separable state can
be written as

|ψ(ϕ,m)〉 =
1

4

4⊗

j=1

(|0〉+ eiϕj |1〉).

where m = (m1,m2,m3,m4) ∈ {0, 1}⊗4, ϕj = ϕ +mjπ.
Let l = mod (

∑
jmj , 2) be the parity of m. Define

̺+(−)(ϕ) =
∑

m|l=0(1) |ψ(ϕ,m)〉〈ψ(ϕ,m)|. Then we have

̺±(ϕ) =
1

16
[IIII ± (cos4 ϕXXXX + sin4 ϕY Y Y Y

+cos2 ϕ sin2 ϕ(XXY Y +XYXY +XY YX

+Y XXY + Y XYX + Y Y XX))]. (57)

Denote

̺5± =
1

1 + sin2 ϕ
(̺±(ϕ) + sin2 ϕ̺∓(

π

2
)).

The separable states in the curves LM and KN in Fig.2
can be expressed as

ρ = (1−R7)̺5∓ +
R7

2
(|0000〉〈0000|+ |1111〉〈1111|), (58)

respectively. Hence R8 = ∓K cos4 ϕ,R15 =

±K cos2 ϕ sin2 ϕ with K = 1−|R7|
1+sin2 ϕ

= 8u
α(1+sin2 ϕ)

. Com-

pare them with equations (38) (39), we have

v =
1

1 + sin2 ϕ
, α =

14− 8 cos4 ϕ

1 + sin2 ϕ
(59)

for curve LM in Fig.2;

v =
sin2 ϕ

1 + sin2 ϕ
, α =

14 sin2 ϕ+ 8 cos4 ϕ

1 + sin2 ϕ
(60)

for curve KN in Fig.2. Here sin2 ϕ = 1
2 (1 − c+) =

3M9−M8

6M9−M8−M15
. Notice that criterion IV is derived along

with the curve A′B′ in Fig.1. In curve A′B′, we have
sin2 ϕ ∈ [0, 12 ]. The maximal value sin2 ϕ = 1

2 gives rise
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to the end points L,N of the curves. The minimal value
sin2 ϕ = 0 gives rise to the end points K,M of the curves.
For the situation of R7 < 0 (namely α < 8u) described

by STUV S in Fig.2, we should have

ρ = (1+R′
1+R7)̺5∓+

−R′
1 −R7

2
((|0〉〈0|)⊗4+(|1〉〈1|)⊗4),

(61)
Hence R8 = ∓K cos4 ϕ,R15 = ±K cos2 ϕ sin2 ϕ with K =
1+6R1+R7

1+sin2 ϕ
. With equations (38)(39), we have the solution

pair α, v as functions of K,ϕ, hence

α =
7u[1 + sin2 ϕ∓ cos2 ϕ(8 sin2 ϕ− 1)]

(1 + sin2 ϕ)u ∓ cos2 ϕ(8 sin2 ϕ− 1)
, (62)

α = 8− 2v + 8(2v − 1) sin2 ϕ. (63)

Where we have used the fact that 1 + 6R1 + R7 = 1 +
7R7 = 8(1 − 7u

α
). Instead of expressing v as a function

of K,ϕ, we use R8/R15 to obtain equation (63). For the
case of p16 = 0, we have u = 1. So that α 6= 7 can only
occur when 1 + sin2 ϕ ∓ cos2 ϕ(8 sin2 ϕ − 1) = 0. The
solutions are sin2 ϕ = 0, 12 , respectively. The equations of
line sections GJ and HJ in Fig.2 are obtained from (63)
with sin2 ϕ = 0, 12 . Hence criterion IV is also sufficient for
states on GJ and HJ .
For the states in between α = 8u and the physical limita-

tion p1 = 0(α = 14u
1+u ), the corresponding sin2 ϕ = 1

8 (4u+

1 −
√
(4u+ 21)(4u− 3)), 12 ,0,

1
2 (2 − u −

√
(1− u)(7− u))

can be derived for v1, v2, v3, v4. Thus criterion IV is also
sufficient condition for the full separability of the states in
the curves.
Hence, for the four qubit highly symmetrical GHZ diag-

onal state set S2, the necessary and sufficient criterion set
is C2={Criterion I, Criterion IV}.

5 Application to four qubit sym-

metric GHZ diagonal states

A GHZ diagonal state is called a symmetric GHZ diago-
nal state if it is invariant under any qubit permutation.
From (16), we have R1 = R2 = R3 = R4 = R5 = R6,
R9 = R10 = R11 = R12 = R13 = R14 for a four qubit
symmetric GHZ diagonal state. Thus the state is specified
by R1, R7, R8, R9, R15. Alternatively, we may use density
matrix elements ρ1,1, ρ1,16, ρ2,2, ρ2,15, ρ4,4, ρ4,13 to charac-
terize the state with ρi,i = ρ17−i,17−i, ρi,17−i = ρ17−i,i and

ρ1,1 = 1
16 (1 + 6R1 +R7), ρ1,16 = 1

16 (R8 − 6R9 +R15),

ρ2,2 = ρ3,3 = ρ5,5 = ρ8,8 = 1
16 (1−R7),

ρ2,15 = ρ3,14 = ρ5,12 = ρ8,9 = 1
16 (R8 −R15),

ρ4,4 = ρ6,6 = ρ7,7 = 1
16 (1− 2R1 +R7),

ρ4,13 = ρ6,11 = ρ7,10 = 1
16 (R8 + 2R9 + R15).

The normalization condition is ρ1,1 + 4ρ2,2 + 3ρ4,4 =
1
2 .

Due to criterion III and criterion IV, the equations of
the curved surfaces detecting entangled states (outside the
surfaces, the states are entangled) are

|ρ2,15|

Ω
=

1

2
(1−

ρ4,13
Ω

+

√
(1 +

ρ4,13
Ω

)(1 +
ρ1,16
Ω

)) (64)

for ρ1,16 ≥ ρ4,13 and

|ρ2,15|

Ω
=

1

2
(1 +

ρ4,13
Ω

+

√
(1 −

ρ4,13
Ω

)(1−
ρ1,16
Ω

)) (65)

for ρ1,16 < ρ4,13, respectively. Where Ω defined previously
can be explained as the minimal diagonal element. We
show the surfaces in Fig.3 with Ω = 1

16 .
If equations (64) and (65) can be achieved by fully sep-

arable states, then the sufficiencies of criterion III and cri-
terion IV are proven for the four qubit symmetric GHZ
diagonal states. Without loss of generality, we set Ω = 1

16 .
We may construct the fully separable state from (57). Let

ρ =
1

1 + µ
[̺+(ϕ) + µ̺−(

π

2
)]. (66)

with µ ≥ 0 and cos(2ϕ) ≥ 0. Then ρ1,16 =
1

16(1+µ) [cos(4ϕ)− µ], ρ2,15 = 1
16(1+µ) [cos(2ϕ) + µ], ρ4,13 =

1
16(1+µ) (1−µ). It can be easily checked that equation (64)

satisfies. Alternatively, if we choose

ρ =
1

1 + µ
[̺+(ϕ) + µ̺−(0)], (67)

with cos(2ϕ) ≤ 0. We have ρ1,16 = 1
16(1+µ) [cos(4ϕ) − µ],

ρ2,15 = 1
16(1+µ) [cos(2ϕ)− µ], ρ4,13 = 1

16(1+µ) (1− µ). Then

equation (65) satisfies. Similarly, equation (64)(or (65))
satisfies by setting ρ to be the mixture of ̺−(ϕ) and ̺+(

π
2 )

(or ̺+(0) ). Hence, Criterion III and Criterion IV are nec-
essary and sufficient for the full separability of symmetric
GHZ diagonal states.
The states in the plane surfaces of Fig.3 can be com-

posed with fully separable states in the following way. Cri-
terion I gives rise to the equation (52). It follows the ele-
ments of density matrix:

ρ1,16 = Ω; ρ4,13 = (1−2q1)Ω; ρ2,15 = (1−q1−2q2)Ω, (68)

with Ω = u
16 . The probability distribution (q1, q2, 1 −

q1 − q2) limits us with 0 ≤ q2 ≤ 1 − q1, thus in the
plane ρ1,16 = Ω we have two straight line sections ρ2,15 =
1
2 (Ω + ρ4,13) when q2 is set to 0 (its lower bound) and
ρ2,15 = − 1

2 (Ω + ρ4,13) when q2 is set to 1 − q1 (its up-
per bound). Hence all the states enclosed by the line sec-
tions in the plane are separable sufficiently. More pre-
cisely, the states in the triangle with vertices (Ω,−Ω, 0),
(Ω,Ω,Ω), (Ω,Ω,−Ω) in the three-dimensional coordinate
system (ρ1,16, ρ4,13, ρ2,15) are separable sufficiently. A
state inside the triangle should meet the requirements of
ρ2,15 ≤ 1

2 (Ω + ρ4,13) and ρ2,15 ≥ − 1
2 (Ω + ρ4,13), they are

just the conditions R8

R9
≤ 1, R15

R9
≤ 1 in (28) for Crite-

rion I. Similarly, the states in the triangle with vertices
(−Ω,Ω, 0), (−Ω,−Ω,−Ω), (−Ω,−Ω,Ω) in the coordinate
system are separable sufficiently. Hence, Criterion I is nec-
essary and sufficient for the full separability of symmetric
GHZ diagonal states.
The intersection of the curved surface (64) and the plane

ρ4,13 = Ω is a parabola

|ρ2,15|

Ω
=

√
1

2
(1 +

ρ1,16
Ω

) (69)
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Figure 3: (Color on line)The curved surfaces and the other
plane surfaces are the boundaries of fully separable state
set. We show the positive ρ2,15 in the figure with Ω =
1
16 . The mirror reflection of the figure with respect to
ρ1,16 − ρ4,13 plane is not shown.

with Ω ≥ ρ1,16 ≥ −Ω. The states enclosed by the parabola

should meet the requirement of
|ρ2,15|

Ω ≤
√

1
2 (1 +

ρ1,16
Ω ), it

is just the condition R8R15

R2
9

≥ 1 in (28) for Criterion II. In

the plane of ρ3,14 = Ω, the states enclosed by parabola (69)
can be decomposed as probability mixture of the states on
the parabola, thus they are fully separable due to the full
separability of the states on the parabola. Hence Criterion
II is necessary and sufficient for the states enclosed by
parabola (69) on the plane ρ3,14 = Ω. Similarly we can
show that Criterion II is necessary and sufficient for the

states enclosed by parabola
|ρ2,15|

Ω =
√

1
2 (1 −

ρ1,16
Ω ) on the

plane ρ3,14 = −Ω.
All the boundaries determined by the necessary crite-

ria for the four qubit symmetric GHZ diagonal states are
proved to be also sufficient, since the states on boundaries
are proved to be fully separable. Outside the boundaries,
the states are entangled.
Hence, for the four qubit symmetrical GHZ diagonal

state set S3, the necessary and sufficient criterion set is
C3={Criterion I,Criterion II,Criterion III,Criterion IV}.

6 Discussion

The PPT criterion of separability for the four qubit GHZ
diagonal states is

max
i

|ρi,17−i| ≤ min
j
ρj,j, (70)

the maximal absolute anti-diagonal element does not ex-
ceed the minimal diagonal element. This criterion can also
be obtained with proper Mi subjecting to |Mi| = 1. More
explicitly, from (9) we have

g(ϕ) = cos(ϕ1 + ϕ2 + ϕ3 + ϕ4) ≤ 1, (71)

by setting M8 = M15 = 1,M9 = ... = M14 = −1. Thus
g̃ = 1. Notice that

∑15
i=8MiRi = 16ρ1,16. Changing the

sign of ϕj (j=1,2,3,4) leads to different assignment of signs
for Mi (i=8,...,15) while keeping g̃ = 1. The maximal∑15
i=8MiRi is 16max |ρi,17−i| (i=1,...16).

For the four qubit symmetric GHZ diagonal states, the
PPT criterion (70) defines a cube. The surface of cube
coincides with the some parts of border surface between
separable and entangled states.

For GHZ diagonal states, there is a sufficient condition
for the coincidence of the PPT criterion and the full sep-
arability criterion[16]. The condition can be written as

R9R15 ≤ 0 and R9R8 ≤ 0. (72)

The border states in the planes ρ4,13 = −Ω and ρ4,13 =
Ω do not satisfy the condition (72). On plane surfaces
ρ1,16 = ±Ω, the border states form two triangles. Only
some of these states satisfy the condition (72), they form
two less size triangles.

7 Conclusion

We have found that the set of necessary and sufficient cri-
teria of separability has a subset structure. The smallest
criterion set C1 has one criterion (criterion I), it can detect
the full separability of the generalized Werner state (GHZ
state mixed with white noise or identity) set S1 necessarily
and sufficiently. The state set S2 is the set of four qubit
highly symmetric GHZ diagonal states. It includes S1 as
its subset. We have found the criterion set C2 with two
criteria (criterion I and Criterion IV) which can detect the
full separability of states in S2. The criterion set C1 is a
subset of C2. Criterion set C3 has four criteria: Criterion
I,Criterion II, Criterion III, Criterion IV. Criterion set C3
is necessary and sufficient for the state set S3 of four qubit
symmetric GHZ diagonal states. We have necessary and
sufficient criterion set Ci for state set Si for i = 1, 2, 3, with
C2 being the subset of C3 and the superset of C1, S2 being
the subset of S3 and the superset of S1. The nest struc-
ture of the criterion set suggests us a way of developing
criterion set for large state set from some seed state set.

We have used the two step of optimizations to analyt-
ically obtain C3 when the state is a four qubit symmet-
ric GHZ diagonal state. We proved the sufficiency of C3
for these symmetric states by explicitly constructing these
states with fully separable states. All boundaries of the
fully separable state set of four qubit symmetric GHZ di-
agonal states have been found by the criteria. We also
have studied the sufficient condition for the coincidence of
PPT criterion and fully separable criterion.
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