Skip to main content
Log in

A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum walks have emerged as an interesting approach to implementing quantum information processing task in recent years. In this work, we take advantage of the properties of quantum walks to design a novel kind of flexible and conclusive quantum teleportation scheme of multiple arbitrary qubits. First, two-walker quantum walks on three types of quantum structures, the line, the cycle and two-vertice complete graph with loops, are utilized to accomplish the teleportation of an arbitrary 2-qubit state. Second, without loss of generality, a generalization for teleporting an arbitrary N-qubit state is also shown by N-walker quantum walks on two-vertice complete graph with loops. Our scheme has two merits. (i) Three different quantum-walk structures can be used to teleport an arbitrary N-qubit state, which means that one can implement the scheme flexibly, depending on the concrete experimental environment. (ii) The prior entangled state is not necessarily prepared, as multiple-walker quantum walks may contain entanglement. In addition, the single-particle projective measurement and single-qubit gate are required, rather than a joint measurement and controlled-NOT gate, which will possibly simplify experimental realizations of this scheme. This work stimulates us to explore more potential applications of multi-walker quantum walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  2. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. Childs, A.M., Gosset, D., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  6. Ambainis, A., Kempe, J., Rivosh, A.: In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108. Society for Industrial and Applied Mathematics (2005)

  7. Tulsi, A.: Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78(1), 012310 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  9. Xue, P., Sanders, B.C., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103(18), 183602 (2009)

    Article  ADS  Google Scholar 

  10. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110(26), 263602 (2013)

    Article  ADS  Google Scholar 

  11. Xue, P., Zhang, R., Qin, H., Zhan, X., Bian, Z., Li, J., Sanders, B.C.: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114(14), 140502 (2015)

    Article  ADS  Google Scholar 

  12. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307 (2003)

    Article  ADS  Google Scholar 

  14. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing ACM, pp. 37–49 (2001)

  15. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing ACM, pp. 50–59 (2001)

  16. Bednarska, M., Grudka, A., Kurzyński, P., Łuczak, T., Wójcik, A.: Quantum walks on cycles. Phys. Lett. A 317(1–2), 21 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Carneiro, I., Loo, M., Xu, X., Girerd, M., Kendon, V., Knight, P.L.: Entanglement in coined quantum walks on regular graphs. New J. Phys. 7(1), 156 (2005)

    Article  ADS  Google Scholar 

  18. Orthey, A.C., Amorim, E.P.: Asymptotic entanglement in quantum walks from delocalized initial states. Quantum Inf. Process. 16(9), 224 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Linden, N., Sharam, J.: Inhomogeneous quantum walks. Phys. Rev. A 80(5), 052327 (2009)

    Article  ADS  Google Scholar 

  20. Kurzyński, P., Wójcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 83(6), 062315 (2011)

    Article  ADS  Google Scholar 

  21. Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)

    Article  ADS  Google Scholar 

  23. Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quantum Inf. Process. 15(1), 103 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ribeiro, P., Milman, P., Mosseri, R.: Aperiodic quantum random walks. Phys. Rev. Lett. 93(19), 190503 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. Banuls, M., Navarrete, C., Pérez, A., Roldán, E., Soriano, J.: Quantum walk with a time-dependent coin. Phys. Rev. A 73(6), 062304 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)

    Article  ADS  Google Scholar 

  27. Kurzyński, P., Wójcik, A.: Quantum walk as a generalized measuring device. Phys. Rev. Lett. 110(20), 200404 (2013)

    Article  ADS  Google Scholar 

  28. Zhan, X., Qin, H., Bian, Z.H., Li, J., Xue, P.: Perfect state transfer and efficient quantum routing: a discrete-time quantum-walk approach. Phys. Rev. A 90(1), 012331 (2014)

    Article  ADS  Google Scholar 

  29. Yalçınkaya, İ., Gedik, Z.: Qubit state transfer via discrete-time quantum walks. J. Phys. A Math. Theor. 48(22), 225302 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Montero, M.: Quantum and random walks as universal generators of probability distributions. Phys. Rev. A 95(6), 062326 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5(1), 83 (2003)

    Article  ADS  Google Scholar 

  33. Venegas-Andraca, S., Ball, J., Burnett, K., Bose, S.: Quantum walks with entangled coins. New J. Phys. 7(1), 221 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  34. Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)

    Article  ADS  Google Scholar 

  35. Liu, C.: Asymptotic distributions of quantum walks on the line with two entangled coins. Quantum Inf. Process. 11(5), 1193 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Omar, Y., Paunković, N., Sheridan, L., Bose, S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74(4), 042304 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Pathak, P., Agarwal, G.: Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75(3), 032351 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83(4), 042317 (2011)

    Article  ADS  Google Scholar 

  39. Štefaňák, M., Barnett, S., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13(3), 033029 (2011)

    Article  ADS  Google Scholar 

  40. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Silberhorn, C.: Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J. Phys. 13(1), 013001 (2011)

    Article  ADS  Google Scholar 

  41. Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A 85(2), 022307 (2012)

    Article  ADS  Google Scholar 

  42. Rigovacca, L., Di Franco, C.: Two-walker discrete-time quantum walks on the line with percolation. Sci. Rep. 6, 22052 (2016)

    Article  ADS  Google Scholar 

  43. Wang, Q., Li, Z.J.: Repelling, binding, and oscillating of two-particle discrete-time quantum walks. Ann. Phys. 373, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Gilchrist, A., Silberhorn, C.: Increasing the dimensionality of quantum walks using multiple walkers. J. Comput. Theor. Nanosci. 10(7), 1644 (2013)

    Article  Google Scholar 

  45. Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC 58(3), 809–827 (2019)

    Google Scholar 

  46. Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96(6), 062326 (2017)

    Article  ADS  Google Scholar 

  48. Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)

    Article  MathSciNet  Google Scholar 

  49. Li, X.M., Yang, M., Paunković, N., Li, D.C., Cao, Z.L.: Entanglement swapping via three-step quantum walk-like protocol. Phys. Lett. A 381(46), 3875 (2017)

    Article  ADS  MATH  Google Scholar 

  50. Rajendran, J., Benjamin, C.: Implementing parrondo’s paradox with two-coin quantum walks. Open Sci. 5(2), 171599 (2018)

    Google Scholar 

  51. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Yang, C.P., Guo, G.C.: Multiparticle generalization of teleportation. Chin. Phys. Lett. 17(3), 162 (2000)

    Article  ADS  Google Scholar 

  54. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66(5), 052318 (2002)

    Article  ADS  Google Scholar 

  55. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71(3), 032303 (2005)

    Article  ADS  Google Scholar 

  56. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53(4), 1322 (2014)

    Article  MATH  Google Scholar 

  57. Zhao, N., Li, M., Chen, N., Zhu, C.H., Pei, C.X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76(4), 040301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1636106, 61671087, 61170272), Natural Science Foundation of Beijing Municipality (No. 4182006), Technological Special Project of Guizhou Province (Grant No. 20183001), and the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant Nos. 2018BDKFJJ016, 2018BDKFJJ018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HJ., Chen, XB., Wang, YL. et al. A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum Inf Process 18, 266 (2019). https://doi.org/10.1007/s11128-019-2374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2374-7

Keywords

Navigation