Skip to main content
Log in

Controlled joint remote preparation of an arbitrary N-qubit state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel scheme for controlled joint remote preparation of an arbitrary N-qubit state is proposed. In the scheme, Alice and David prepare an arbitrary N-qubit state on Bob’s side under the control of Charlie by using a 3N + 1-qubit entangled state as the quantum channel. First, the quantum channel is constructed through the Hadamard and controlled-NOT operations. Then, Alice, David, and Charlie each perform the quantum measurements on their own qubits. To ensure that the original state can be prepared determinately, two algorithms are proposed to construct the measurement bases for Alice and David. Finally, Bob reconstructs the original state with several appropriate unitary operations on his qubits according to the measurement results of Alice, David, and Charlie. To demonstrate the feasibility of the scheme, a remote preparation example of an arbitrary two-qubit state with the scheme is given. At the end of this paper, the efficiency analysis of the scheme and some conclusions is presented. In comparison with previous schemes, the scheme is superior in terms of the capability and efficiency of quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Jozsa, R., Peres, A., Wootters, W.K., Crépeau, C.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (2002). https://doi.org/10.1103/physrevlett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. (1992). https://doi.org/10.1103/physrevlett.69.2881

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015). https://doi.org/10.1007/s10773-014-2372-6

    Article  MATH  Google Scholar 

  4. Li, H., Li, C., Jiang, M.: Programmable quantum logic gates using teleportation with non-maximally entangled states. Optoelectron. Lett. 8, 63–66 (2012). https://doi.org/10.1007/s11801-012-1035-1

    Article  ADS  Google Scholar 

  5. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Quantum teleportation with partially entangled states via noisy channels. Quantum Inf. Process. 12, 2671–2687 (2013). https://doi.org/10.1007/s11128-013-0555-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014). https://doi.org/10.1007/s10773-013-1928-1

    Article  MATH  Google Scholar 

  7. Tan, X., Yang, P., Song, T.: Teleportation of three-particle W state. Int. J. Theor. Phys. 57, 329–338 (2018). https://doi.org/10.1007/s10773-017-3565-6

    Article  MATH  Google Scholar 

  8. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013). https://doi.org/10.1007/s11128-013-0638-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Li, D., Wang, R., Zhang, F., Baagyere, E., Qin, Z., Xiong, H., Zhan, H.: A noise immunity controlled quantum teleportation protocol. Quantum Inf. Process. 15, 4819–4837 (2016). https://doi.org/10.1007/s11128-016-1416-7

    Article  ADS  MATH  Google Scholar 

  10. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. (2014). https://doi.org/10.1007/s11128-014-0766-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Zomorodi-Moghadam, M., Houshmand, M., Houshmand, M.: Optimizing teleportation cost in distributed quantum circuits. Int. J. Theor. Phys. 57, 848–861 (2018). https://doi.org/10.1007/s10773-017-3618-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Qiao, Y., Sang, M., Nie, Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019). https://doi.org/10.1007/s10773-019-04041-7

    Article  Google Scholar 

  13. Tan, X., Zhang, X., Song, T.: Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state. Int. J. Theor. Phys. 55, 155–160 (2016). https://doi.org/10.1007/s10773-015-2645-8

    Article  MATH  Google Scholar 

  14. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57, 175–183 (2018). https://doi.org/10.1007/s10773-017-3551-z

    Article  MATH  Google Scholar 

  15. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using six-qubit cluster state. IEEE Access. 7, 44269–44275 (2019). https://doi.org/10.1109/ACCESS.2019.2901960

    Article  Google Scholar 

  16. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state. Quantum Inf. Process. 16, 1–19 (2017). https://doi.org/10.1007/s11128-017-1744-2

    Article  MathSciNet  Google Scholar 

  17. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3 ⇔ 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A At. Mol. Opt. Phys. (2000). https://doi.org/10.1103/physreva.62.012313

    Article  Google Scholar 

  19. Ma, S.Y., Luo, M.X., Chen, X.B., Yang, Y.X.: Schemes for remotely preparing an arbitrary four-qubit χ -state. Quantum Inf. Process. 13, 1951–1965 (2014). https://doi.org/10.1007/s11128-014-0788-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hua, C., Chen, Y.X.: A scheme for remote state preparation of a general pure qubit with optimized classical communication cost. Quantum Inf. Process. 14, 1069–1076 (2015). https://doi.org/10.1007/s11128-014-0897-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Miao, C., Fang, S.D., Dong, P., Cao, Z.L.: Remote preparation of quantum entangled state in a non-Markovian environment. Int. J. Theor. Phys. 53, 4098–4106 (2014). https://doi.org/10.1007/s10773-014-2161-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Xue, Y., Shi, L., Da, X., Zhou, K., Ma, L., Wei, J., Yu, L., Hu, H.: Remote preparation of four-qubit states via two-qubit maximally entangled states. Quantum Inf. Process. 18, 1–16 (2019). https://doi.org/10.1007/s11128-019-2205-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei, J., Shi, L., Ma, L., Xue, Y., Zhuang, X., Kang, Q., Li, X.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 1–12 (2017). https://doi.org/10.1007/s11128-017-1708-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Xiao, X.Q., Xiao, J., Ren, Y., Li, Y., Ji, C., Huang, X.G.: Remote state preparation of a two-atom entangled state in cavity QED. Int. J. Theor. Phys. 55, 2764–2772 (2016). https://doi.org/10.1007/s10773-015-2909-3

    Article  MATH  Google Scholar 

  25. Wang, D., Liu, Y., Zhang, Z.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008). https://doi.org/10.1016/j.optcom.2007.10.032

    Article  ADS  Google Scholar 

  26. Zhang, Y.G., Dou, G., Zha, X.W.: Controlled remote state preparation of an arbitrary two-qubit state by using two sets of four-qubit GHZ states. Int. J. Theor. Phys. 57, 506–515 (2018). https://doi.org/10.1007/s10773-017-3582-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16, 1–29 (2017). https://doi.org/10.1007/s11128-017-1690-z

    Article  MATH  Google Scholar 

  28. Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 1–10 (2019). https://doi.org/10.1038/s41598-018-37957-x

    Article  ADS  Google Scholar 

  29. Dong, T., Ma, S.Y.: Effect of quantum noise on the controlled remote preparation via the Brown state. Int. J. Theor. Phys. 57, 3563–3575 (2018). https://doi.org/10.1007/s10773-018-3870-8

    Article  MATH  Google Scholar 

  30. Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 1–12 (2018). https://doi.org/10.1007/s11128-018-1943-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, N.N., Jiang, M.: A highly efficient scheme for joint remote preparation of multi-qubit W state with minimum quantum resource. Quantum Inf. Process. 17, 1–17 (2018). https://doi.org/10.1007/s11128-018-2098-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Zhang, C., Bai, M., Zhou, S.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17, 1–20 (2018). https://doi.org/10.1007/s11128-018-1917-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51, 3376–3386 (2012). https://doi.org/10.1007/s10773-012-1217-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Falaye, B.J., Sun, G.-H., Camacho-Nieto, O., Dong, S.-H.: JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels. Int. J. Quantum Inf. 14, 1–17 (2016). https://doi.org/10.1142/S0219749916500349

    Article  MATH  Google Scholar 

  35. Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 57, 148–158 (2018). https://doi.org/10.1007/s10773-017-3549-6

    Article  MATH  Google Scholar 

  36. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223–3237 (2013). https://doi.org/10.1007/s11128-013-0595-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wang, D., Hu, Y.Di, Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135–2151 (2015). https://doi.org/10.1007/s11128-015-0966-4

    Article  ADS  MATH  Google Scholar 

  38. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755–1774 (2015). https://doi.org/10.3390/e17041755

    Article  ADS  Google Scholar 

  39. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55, 3454–3466 (2016). https://doi.org/10.1007/s10773-016-2972-4

    Article  MathSciNet  MATH  Google Scholar 

  40. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015). https://doi.org/10.1007/s11128-015-1122-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016). https://doi.org/10.1007/s11128-015-1226-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2014). https://doi.org/10.1007/s11128-014-0835-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Chen, H.B., Fu, H., Li, X.W., Ma, P.C., Zhan, Y.B.: Economic scheme for remote preparation of an arbitrary five-qubit Brown-type state. Pramana J. Phys. 86, 783–788 (2016). https://doi.org/10.1007/s12043-015-1086-5

    Article  ADS  Google Scholar 

  44. Wei, J., Shi, L., Luo, J., Zhu, Y., Kang, Q., Yu, L., Wu, H., Jiang, J., Zhao, B.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 1–11 (2018). https://doi.org/10.1007/s11128-018-1905-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. Sect. A Gen. At. Solid State Phys. 376, 2944–2950 (2012). https://doi.org/10.1016/j.physleta.2012.08.032

    Article  Google Scholar 

  46. Gao, W.B., Xu, P., Yao, X.C., Gühne, O., Cabello, A., Lu, C.Y., Peng, C.Z., Chen, Z.B., Pan, J.W.: Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states. Phys. Rev. Lett. 104, 4–7 (2010). https://doi.org/10.1103/PhysRevLett.104.020501

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Plan under Great No. 2018YFC1200200 and 2018YFC1200205; the National Natural Science Foundation of China under Grant Nos. 61463016 and 61763014; Science and technology innovation action plan of Shanghai in 2017 under Grant No. 17510740300; Scientific Research Fund of Hunan Provincial Education Department under Grant Nos. 18B420 and 18C0796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SX., Zhou, RG., Xu, R. et al. Controlled joint remote preparation of an arbitrary N-qubit state. Quantum Inf Process 18, 265 (2019). https://doi.org/10.1007/s11128-019-2375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2375-6

Keywords

Navigation