Skip to main content
Log in

An encryption protocol for NEQR images based on one-particle quantum walks on a circle

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Comment to this article was published on 13 May 2021

Abstract

Quantum walks are generalizations of random walks that have extensive applications in various fields including cryptography, quantum algorithms, and quantum networking. Discrete quantum walks can be seen as nonlinear mappings between quantum states and position probability distributions, and this mathematical property may be thought of as an imprint of chaotic behavior and consequently used to generate encryption keys. In this paper, we introduce encryption and decryption algorithms for NEQR images based on discrete quantum walks on a circle. We present full quantum circuits of proposed encryption and decryption algorithms together with digital computer simulations of most common attacks on encrypted images. Our numerical results show that our quantum image encryption and decryption scheme has high efficiency and high security with high large key space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Patel, K.D., Belani, S.: Image encryption using different techniques: a review. Int. J. Emerg. Technol. Adv. Eng. 1(1), 30 (2011)

    Google Scholar 

  2. El-Latif, A.A.A., Li, L., Zhang, T., Wang, N., Song, X., Niu, X.: Digital image encryption scheme based on multiple chaotic systems. Sens. Imaging Int. J. 13(2), 67 (2012)

    Article  ADS  Google Scholar 

  3. El-Latif, A.A.A., Li, L., Niu, X.: A new image encryption scheme based on cyclic elliptic curve and chaotic system. Multimed. Tools Appl. 70(3), 1559 (2014)

    Article  Google Scholar 

  4. Kocarev, L., Shiguo, L. (eds.): Chaos-Based Cryptography. Theory, Algorithms and Applications. Studies on Computational Intelligence. Springer, New York (2011)

    Google Scholar 

  5. Sobottka, M., de Oliveira, L.: Periodicity and predictability in chaotic system. Am. Math. Mon. 113(5), 415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Boston (1990)

    Google Scholar 

  7. Banks, J., Dragan, V., Jones, A.: Chaos: A Mathematical Introduction. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  8. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6 (2001)

    Article  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  11. Wittek, P.: Quantum Machine Learning. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

  12. Schulda, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)

    Article  ADS  Google Scholar 

  13. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  14. Lanzagorta, M.: Quantum Radar. Morgan and Claypool, San Rafael (2011)

    Book  Google Scholar 

  15. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Abura’ed, N., Khan, F., Bhaskar, H.: Advances in the quantum theoretical approach to image processing applications. ACM Comput. Surv. 49(4), 1–49 (2017)

    Article  Google Scholar 

  17. Abd-El-Atty, B., Venegas-Andraca, S.E., El-Latif, A.A.A.: Quantum information protocols for cryptography. In: Hassanien, A.E., Elhoseny, M., Kacprzyk, J. (eds.) Quantum Computing: An Environment for Intelligent Large Scale Real Application, pp. 3–23. Springer, Cham (2018)

    Chapter  Google Scholar 

  18. Yan, F., Chen, K., Venegas-Andraca, S., Zhao, J.: Quantum image rotation by an arbitrary angle. Quantum Inf. Process. 16, 282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vlasov, A.: Quantum Computations and Image Recognition. arXiv:quant-ph/9703010 (1997)

  20. Beach, G., Lomont, C., Cohen, C.: Quantum image processing. In: Proceedings of The 2003 IEEE Workshop on Applied Imagery Pattern Recognition, pp. 39–44 (2003)

  21. Venegas-Andraca, S., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)

  22. Venegas-Andraca, S., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference Quantum Information and Computation, pp. 137–147 (2003)

  23. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379 (2014)

    Article  Google Scholar 

  26. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (1849)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 12(11), 3477 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gong, L.H., He, X.T., Cheng, S., Hua, T.X., Zhou, N.R.: Quantum image encryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7), 3234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Tan, R.C., Lei, T., Zhao, Q.M., Gong, L.H., Zhou, Z.H.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform. Int. J. Theor. Phys. 10, 5368–5384 (2016)

    Article  MATH  Google Scholar 

  33. Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 10, 164 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. El-Latif, A.A.A., Abd-El-Atty, B., Talha, M.: Robust encryption of quantum medical images. IEEE Access 6, 1073–1081 (2017)

    Article  Google Scholar 

  35. Li, L., Abd-El-Atty, B., El-Latif, A.A.A., Ghoneim, A.: Quantum color image encryption based on multiple discrete chaotic systems. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 555–559 (2017)

  36. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107 (2016)

    Article  MATH  Google Scholar 

  37. Abd-El-Atty, B., El-Latif, A.A.A., Amin, M.: New quantum image steganography scheme with Hadamard transformation. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 342–352. Springer (2016)

  38. Zhang, T.J., Abd-El-Atty, B., Amin, M., El-Latif, A.A.A.: QISLSQb: a quantum image steganography scheme based on least significant qubit. In: DEStech Transactions on Computer Science and Engineering (MCSSE) (2016)

  39. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352 (2015)

    Article  Google Scholar 

  40. El-Latif, A.A.A., Abd-El-Atty, B., Hossain, M.S., Rahman, M.A., Alamri, A., Gupta, B.: Efficient quantum information hiding for remote medical image sharing. IEEE Access 6, 21075 (2018)

    Article  Google Scholar 

  41. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Childs, A.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shenvi, N., Kempe, J., Whaley, R.: A quantum random walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  46. Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by quantum walk. In: Proceedings of the 35th ACM Symposium on The Theory of Computation (STOC’03), pp. 59–68. ACM (2003)

  47. Santha, M.: Quantum walk based search algorithms. In: Proceedings of the 5th Theory and Applications of Models of Computation (TAMC08), Xian, LNCS 4978, pp. 31–46 (2008)

  48. Childs, A., van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Yang, Y.G., Pan, Q.X., Sun, S.J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep. 5(7784), 7784 (2015)

    Article  Google Scholar 

  50. Yang, Y.G., Zhao, Q.Q.: Novel pseudo-random number generator based on quantum random walks. Sci. Rep. 6, 20362 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  51. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12, 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, D., Yang, Y.G., Bi, J.L., Yuan, J.B., Xu, J.: Controlled alternate quantum walks based quantum hash function. Sci. Rep. 8(1), 225 (2018)

    Article  ADS  Google Scholar 

  53. Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)

    Article  ADS  Google Scholar 

  54. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  55. Nayak, A., Vishwanath, A.: Quantum walk on the line. arXiv:quant-ph/0010117

  56. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33th ACM Symposium on the Theory of Computation (STOC’01), pp. 50–59. ACM (2001)

  57. Lovett, N., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  58. Feldman, E., Hillery, M.: Modifying quantum walks: a scattering theory approach. J. Phys. A Math. Theor. 40, 11343 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Carson, G.R., Loke, T., Wang, J.B.: Entanglement dynamics of two-particle quantum walks. Quantum Inf. Process. 14(9), 3193 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Luo, H., Xue, P.: Properties of long quantum walks in one and two dimensions. Quantum Inf. Process. 14(12), 4361 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. Wong, T.G.: Quantum walk on the line through potential barriers. Quantum Inf. Process. 15(2), 675 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Konno, N., Mitsuhashi, H., Sato, I.: The discrete-time quarternionic quantum walk on a graph. Quantum Inf. Process. 15(2), 651 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. N. J. Phys. 5(1), 83 (2003)

    Article  Google Scholar 

  64. Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (1992)

    Google Scholar 

  65. Bitcoin Private Keys. https://wiki.bitcoin.com/w/Private_key. Accessed 1 June 2019

Download references

Acknowledgements

All authors would like to thank Professor Dan Li at Nanjing University of Aeronautics and Astronautics and Professor Mohamed Amin at Menoufia University for their insightful comments and valuable feedback. SEVA gratefully acknowledges the unconditional support of his family as well as the financial support of Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias and CONACyT (SNI number 41594 as well as Fronteras de la Ciencia project number 1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador E. Venegas-Andraca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-El-Atty, B., Abd El-Latif, A.A. & Venegas-Andraca, S.E. An encryption protocol for NEQR images based on one-particle quantum walks on a circle. Quantum Inf Process 18, 272 (2019). https://doi.org/10.1007/s11128-019-2386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2386-3

Keywords

Navigation