Skip to main content
Log in

Qubit-loss-free fusion of W states in cavity quantum electrodynamics system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a new qubit-loss-free fusion scheme for atom W states has been proposed in cavity quantum electrodynamics system. Based on the resonant interactions between the atoms and the cavity modes, a larger-scale atom W state can be generated from three or four small-scale entangled states on the condition that one or two qubit of each W state is permitted to enter the fusion mechanism. The premise of all current fusion schemes is that only one particle can be extracted from each W state to be fused, and with the progress of experimental technology, two particles can be extracted. In this case, the qubit-loss-free fusion scheme will be realized for fusing more W states without any ancillary particles. In addition, the fusion of the atomic states can be achieved through the detection on cavity mode rather than the complex atomic detection, which makes the preparation scheme be more efficient andsimpler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Özdemir, Ş.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76(4), 042325 (2007)

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dür, W.: Multipartite entanglement that is robust against disposal of particles. Phys. Rev. A 63, 020303(R) (2001)

    Article  ADS  Google Scholar 

  8. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  10. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gra̋fe, M.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791–795 (2014)

    Article  ADS  Google Scholar 

  12. Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using W-state. Opt. Commun. 331, 353–358 (2014)

    Article  ADS  Google Scholar 

  13. Ozaydin, F.: Phase damping destroys quantum Fisher information of W states. Phys. Lett. A 378, 3161–3164 (2014)

    Article  ADS  Google Scholar 

  14. Yu, N., Guo, C., Duan, R.: Obtaining a W state from a Greenberger–Horne–Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112, 160401 (2014)

    Article  ADS  Google Scholar 

  15. Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication with W states (2002). arXiv:quant-ph/0204003

  16. Murao, M., Jonathan, D.M., Plenio, B., Vedral, V.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  17. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W states. Phys. Lett. A 296, 161 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. Joo, J., Park, Y.J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  19. Yeo, Y.: Quantum teleportation using three-particle entanglement (2003). arXiv:quant-ph/0302030

  20. Bose, S., Vedral, V., Kninght, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  21. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  22. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173–183 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Ozaydin, F., Altintas, A., Yesilyurt, C., Bugu, S., Erol, V.: Quantum fisher information of bipartitions of W states. Acta Phys. Pol. A 127(4), 1233–1235 (2015)

    Article  Google Scholar 

  24. Dag, C.B., Mustecaplioglu, O.E.: Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines (2016). arXiv:1507.08136

  25. Özdemir, Ş.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011)

    Article  ADS  Google Scholar 

  26. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302 (2008)

    Article  ADS  Google Scholar 

  27. Tashima, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009)

    Article  ADS  Google Scholar 

  28. Zang, X.P., Yang, M., Wu, W.F., Fang, S.D., Cao, Z.L.: Local expansion of atomic W state in cavity quantum electrodynamics. Indian J. Phys. 88, 1141 (2014)

    Article  ADS  Google Scholar 

  29. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic W states. Opt. Express 24, 12293 (2016)

    Article  ADS  Google Scholar 

  30. Yesilyurt, C., Bugu, S., Ozaydin, F., Altintas, A., Tame, M., Yang, L., Özdemir, Ş.K.: Deterministic local expansion of W states. J. Opt. Soc. Am. B 33, 2313 (2016)

    Article  ADS  Google Scholar 

  31. Tashima, T., Kitano, T., Özdemir, Ş.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. lett. 105(21), 210503 (2010)

    Article  ADS  Google Scholar 

  32. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, Ş.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014)

    Article  ADS  Google Scholar 

  33. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12, 2965 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)

    Article  ADS  Google Scholar 

  35. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Generating multi-atom entangled W states via light-matter interface based fusion mechanism. Sci. Rep. 5, 16245 (2015)

    Article  ADS  Google Scholar 

  36. Dikera, F., Ozaydinb, F., Arika, M.: Enhancing the W state fusion processwith a to oli gate and a CNOT gate via one-way quantum computation and linear optics. Acta Phys. Pol. A 127(4), 1189–190 (2015)

    Article  Google Scholar 

  37. Li, N., Yang, J., Ye, L.: Realizing an efficient fusion gate for W states with cross-Kerr nonlinearities and QD-cavity coupled system. Quantum Inf. Process. 14(6), 1933–1946 (2015)

    Article  ADS  Google Scholar 

  38. Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of W states. Phys. Rev. A 94(6), 062315 (2016)

    Article  ADS  Google Scholar 

  39. Wang, M.Y., Hao, Q.Z., Yan, F.L., Gao, T.: Simultaneous qubit-loss-free fusion of three multiple W states. Laser Phys. Lett. 15, 055201 (2018)

    Article  ADS  Google Scholar 

  40. Ding, C.Z., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of atomic W states via photonic detection. Quantum Inf Process 17, 124 (2018). https://doi.org/10.1007/s11128-018-1893-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Li, K., Chen, T.T., Mao, H.B., Wang, J.Q.: Preparing large-scale maximally entangled W states in optical system. Quantum Inf Process 17, 307 (2018). https://doi.org/10.1007/s11128-018-2076-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zheng, B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  43. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392–2395 (2000)

    Article  ADS  Google Scholar 

  44. Yang, M., Cao, Z.L.: Quantum information processing using coherent states in cavity QED. Physica A 366(1), 243–249 (2006)

    Article  ADS  Google Scholar 

  45. Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C., Raimond, J.M., Haroche, S.: Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77(24), 4887–4890 (1996)

    Article  ADS  Google Scholar 

  46. Miller, A.J., Nam, S.W., Martinis, J.M., Sergienko, A.V.: Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83(4), 791–793 (2003)

    Article  ADS  Google Scholar 

  47. Wildfeuer, C.F., Pearlman, A.J., Chen, J., Fan, J., Migdall, A., Dowling, J.P.: Resolution and sensitivity of a Fabry–Perot interferometer with a photon-number-resolving detector. Phys. Rev. A 80(4), 043822 (2009)

    Article  ADS  Google Scholar 

  48. Marsili, F., Verma, V.B., Stern, J.A., Harrington, S., Lita, A.E., Gerrits, T., Vayshenker, I., Baek, B., Shaw, M.D., Mirin, R.P., Nam, S.W.: Detecting single infrared photons with 93% system efficiency. Nature 7, 210–214 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61274100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibing Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Chen, T., Hong, X. et al. Qubit-loss-free fusion of W states in cavity quantum electrodynamics system. Quantum Inf Process 18, 273 (2019). https://doi.org/10.1007/s11128-019-2388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2388-1

Keywords

Navigation