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Abstract

The dynamics of mixedness and entanglement is examined by solving the time-dependent

Schrödinger equation for three coupled harmonic oscillator system with arbitrary time-dependent

frequency and coupling constants parameters. We assume that part of oscillators is inaccessible and

remaining oscillators accessible. We compute the dynamics of entanglement between inaccessible

and accessible oscillators. In order to show the dynamics pictorially we introduce three quenched

models. In the quenched models both mixedness and entanglement exhibit oscillatory behavior

in time with multi-frequencies. It is shown that the mixedness for the case of one inaccessible

oscillator is larger than that for the case of two inaccessible oscillators in the most time interval.

Contrary to the mixedness entanglement for the case of one inaccessible oscillator is smaller than

that for the case of two inaccessible oscillators in the most time interval.
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I. INTRODUCTION

The most peculiar and counterintuitive properties of quantum mechanics are superposi-

tion and entanglement[1–3] of quantum states. In addition to their importance from a pure

theoretical aspect, entanglement is known to play a crucial role in the quantum informa-

tion processing such as quantum teleportation[4], superdense coding[5], quantum cloning[6],

quantum cryptography[7, 8], and quantum metrology[9]. It is also quantum entanglement,

which makes the quantum computer outperform the classical one[10, 11]. Since quantum

technology developed by quantum information processing attracts a considerable attention

recently due to limitation of classical technology, it is important to understand the various

properties of entanglement.

In the theory of entanglement the most basic questions are how to detect and how to quan-

tify it from given quantum states. For last two decades these questions have been explored

mainly in the qubit system. The strategy to first question is to construct the entanglement

witness operators and to explore their properties and applications[12]. Second question

has been explored by constructing the various entanglement measures such as distillable

entanglement[13], entanglement of formation [13], relative entropy of entanglement[14, 15],

three tangle[16, 17] et cetera.

In spite of construction of many entanglement measures the analytic computation of

these measures is very difficult even in the qubit system1 except very rare cases. In the real

physical system where the quantum state is dependent on continuum variables computation

of such measures is highly difficult or might be impossible. Frequently, thus, we use the

von Neumann[18] and Rényi entropies[19] to measure the bipartite entanglement of con-

tinuum state. Furthermore, the entropies enable us to understand the Hawking-Bekenstein

entropy[20–25] of black holes more deeply. They are also important to study on the quantum

criticality[26, 27] and topological matters[28, 29].

In this paper we will study on the dynamics of entanglement in the three coupled har-

monic oscillator system when frequency and coupling constant parameters are arbitrary

time-dependent. The harmonic oscillator system is used in many branches of physics due to

its mathematical simplicity. The analytical expression of von Neumann entropy was derived

1 However, it is possible to compute entanglement of formation for arbitrary two-qubit state[18].
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for a general real Gaussian density matrix in Ref. [23] and it was generalized to massless

scalar field in Ref. [24]. Putting the scalar field system in the spherical box, the author in

Ref. [24] has shown that the total entropy of the system is proportional to surface area. This

result gives some insight into a question why the Hawking-Bekenstein entropy of black hole

is proportional to the area of the event horizon. Recently, the entanglement is computed in

the coupled harmonic oscillator system using a Schmidt decomposition[30]. The von Neu-

mann and Rényi entropies are also explicitly computed in the similar system, called two site

Bose-Hubbard model[31]. More recently, the dynamics of entanglement and uncertainty is

exactly derived in the two coupled harmonic oscillator system when frequency and coupling

constant parameters are arbitrary time-dependent[32].

In this paper we assume as follows. Let us consider three coupled harmonic oscillators A,

B, and C, whose frequency and coupling constant parameters are arbitrary time-dependent.

Let us assume part of oscillator(s) is inaccessible. For example, part of oscillator(s) falls into

black hole horizon and as a result, we can access only remaining ones. Under this situation we

derive the time-dependence of entanglement between inaccessible and accessible oscillators

analytically. As a by-product we also derive the time-dependence of mixedness, which is

trace of square of reduced quantum state. If mixedness is one, this means the quantum

state is pure. It it is zero, this means the quantum state is completely mixed.

This paper is organized as follows. In next section the diagonalization of Hamiltonian

is discussed briefly. In Sec. III we derive the solutions for time-dependent Schrödinger

equation (TDSE) explicitly in the coupled harmonic oscillator system. In Sec. IV we derive

the time dependence of entanglement when A and B oscillators are inaccessible. The time

dependence of mixedness for C oscillator is also derived. In Sec. V we derive the time

dependence of entanglement when A oscillator is inaccessible. The time dependence of

mixedness for (B,C)-oscillator system is also derived. In section VI we introduce three

sudden quenched models, where the frequency and coupling constants are abruptly changed

at t = 0. Using the results of previous sections we compare the dynamics of entanglement

and mixedness when the inaccessible oscillator(s) is different. In Sec. VII a brief conclusion

is given. In appendix A the quantities αi, βi, and γij, which appear in the reduced quantum

state and have long expressions, are explicitly summarized.
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II. DIAGONALIZATION OF HAMILTONIAN

The Hamiltonian we will examine in this paper is

H =
1

2
(p2

1 + p2
2 + p2

3) +
1

2

[
K0(t)(x2

1 + x2
2 + x2

3) + J12(t)(x1 − x2)2 (2.1)

+J13(t)(x1 − x3)2 + J23(t)(x2 − x3)2

]
where {xi, pi} (i = 1, 2, 3) are the canonical coordinates and momenta. We assume that

the frequency parameter K0 and coupling constants Jij are arbitrarily time-dependent. The

Hamiltonian can be written in a form

H =
1

2

3∑
j=1

p2
j +

1

2

3∑
i,j=1

xiKij(t)xj (2.2)

where

K(t) =


K0 + J12 + J13 −J12 −J13

−J12 K0 + J12 + J23 −J23

−J13 −J23 K0 + J13 + J23

 . (2.3)

The eigenvalues of K(t) are λ1(t) = K0 and λ±(t) = K0 + J12 + J13 + J23 ± z, where

z(t) =
√
J2

12 + J2
13 + J2

23 − (J12J13 + J12J23 + J13J23). (2.4)

The corresponding normalized eigenvectors are

v1(t) =
1√
3


1

1

1

 v±(t) = A±


−J12 + J23 ∓ z

J12 − J13 ± z

J13 − J23

 (2.5)

where

A±(t) =
1

J13 − J23

(
2z ± (J13 + J23 − 2J12)

6z

)1/2

. (2.6)

Since K(t) is symmetric, vj (j = 1,±) are orthonormal to each other. It is worthwhile noting

A2
+A

2
− =

1

12z2(J13 − J23)2
, (2.7)

which is frequently used later. Thus, K(t) can be diagonalized as K(t) = U t(t)KD(t)U(t),

where

U(t) =


1/
√

3 1/
√

3 1/
√

3

A+(−J12 + J23 − z) A+(J12 − J13 + z) A+(J13 − J23)

A−(−J12 + J23 + z) A−(J12 − J13 − z) A−(J13 − J23)

 (2.8)
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and KD(t) = diag(λ1, λ+, λ−).

Now, we introduce new coordinates
y1

y+

y−

 = U(t)


x1

x2

x3

 . (2.9)

In terms of the new coordinates the Hamiltonian (2.2) can be diagonalized in a form

H =
1

2

[
π2

1 + ω2
1(t)y2

1

]
+

1

2

[
π2

+ + ω2
+(t)y2

+

]
+

1

2

[
π2
− + ω2

−(t)y2
−
]

(2.10)

where πj are conjugate momenta of yj and ωj(t) =
√
λj (j = 1,±).

III. SOLUTIONS OF TDSE

Consider a Hamiltonian of single harmonic oscillator with arbitrarily time-dependent

frequency

H0 =
p2

2
+

1

2
ω2(t)x2. (3.1)

The TDSE of this system was exactly solved in Ref. [33, 34]. The linearly independent

solutions ψn(x, t) (n = 0, 1, · · · ) are expressed in a form

ψn(x, t) = e−iEnτ(t)e
i
2

(
ḃ
b

)
x2

φn

(x
b

)
(3.2)

where

En =

(
n+

1

2

)
ω(0) τ(t) =

∫ t

0

ds

b2(s)
(3.3)

φn(x) =
1√
2nn!

(
ω(0)

πb2

)1/4

Hn

(√
ω(0)x

)
e−

ω(0)
2
x2

.

In Eq. (3.3) Hn(z) is nth-order Hermite polynomial and b(t) satisfies the Ermakov equation

b̈+ ω2(t)b =
ω2(0)

b3
(3.4)

with b(0) = 1 and ḃ(0) = 0. Solution of the Ermakov equation was discussed in Ref. [35]. If

ω(t) is time-independent, b(t) is simply one. If ω(t) is instantly changed as

ω(t) =

 ωi t = 0

ωf t > 0,
(3.5)
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then b(t) becomes

b(t) =

√
ω2
f − ω2

i

2ω2
f

cos(2ωf t) +
ω2
f + ω2

i

2ω2
f

. (3.6)

For more general time-dependent case the Ermakov equation should be solved numerically.

Recently, the solution (3.6) is extensively used in Ref. [31] to discuss the dynamics of

entanglement for the sudden quenched states of two site Bose-Hubbard model. Since TDSE

is a linear differential equation, the general solution of TDSE is Ψ(x, t) =
∑∞

n=0 cnψn(x, t)

with
∑∞

n=0 |cn|2 = 1. The coefficient cn is determined by making use of the initial conditions.

Using Eqs. (2.10) and (3.2) the general solution for TDSE of the three coupled har-

monic oscillators is Ψ(x1, x2, x3 : t) =
∑

n1

∑
n+

∑
n−
cn1,n+,n−ψn1,n+,n−(x1, x2, x3 : t), where∑

n1

∑
n+

∑
n−
|cn1,n+,n−|2 = 1. In terms of yj given in Eq. (2.9) ψn1,n+,n−(x1, x2, x3 : t) is

expressed as

ψn1,n+,n−(x1, x2, x3 : t) =
1√

2n1+n++n−n1!n+!n−!

(
ω′1ω

′
+ω
′
−

π3

)1/4

(3.7)

×e−i[En,1τ1(t)+En,+τ+(t)+En,−τ−(t)]e
i
2

[(
ḃ1
b1

)
y2
1+

(
˙b+
b+

)
y2
++

(
˙b−
b−

)
y2
−

]

×Hn1

(√
ω′1y1

)
Hn+

(√
ω′+y+

)
Hn−

(√
ω′−y−

)
e−

1
2 [ω′1y2

1+ω′+y
2
++ω′−y

2
−]

where

ω′j(t) =
ωj(0)

b2
j

En,j =

(
nj +

1

2

)
ωj(0) τj(t) =

∫ t

0

ds

b2
j(s)

(3.8)

with j = 1,±. The scale factors bj(t) satisfy their own Ermakov equations;

b̈j + ω2
j (t)bj =

ω2
j (0)

b3
j

(j = 1,±) (3.9)

with bj(0) = 1 and ḃj(0) = 0.

In this paper we consider only the vacuum solution Ψ0(x1, x2, x3 : t) = ψ0,0,0(x1, x2, x3 : t).

Then the density matrix of the whole system is given by

ρABC(xj : x′j : t) ≡ Ψ(xj : t)Ψ∗(x′j : t) =

(
ω′1ω

′
+ω
′
−

π3

)1/2

exp

[
−

3∑
i,j=1

(
xiGijxj + x′iG

∗
ijx
′
j

)]
(3.10)
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where Gij = Gji with

G11 =
1

2

[v1

3
+ v+A

2
+(−J12 + J23 − z)2 + v−A

2
−(−J12 + J23 + z)2

]
G22 =

1

2

[v1

3
+ v+A

2
+(J12 − J13 + z)2 + v−A

2
−(J12 − J13 − z)2

]
G33 =

1

2

[v1

3
+
(
v+A

2
+ + v−A

2
−
)

(J13 − J23)2
]

(3.11)

G12 =
1

2

[v1

3
+ v+A

2
+(−J12 + J23 − z)(J12 − J13 + z) + v−A

2
−(−J12 + J23 + z)(J12 − J13 − z)

]
G13 =

1

2

[v1

3
+
{
v+A

2
+(−J12 + J23 − z) + v−A

2
−(−J12 + J23 + z)

}
(J13 − J23)

]
G23 =

1

2

[v1

3
+
{
v+A

2
+(J12 − J13 + z) + v−A

2
−(J12 − J13 − z)

}
(J13 − J23)

]
.

In Eq. (3.11) vj (j = 1,±) is defined by

vj = ω′j − i
ḃj
bj
. (3.12)

In next two sections we discuss on the mixedness and entanglement of the reduced states

ρ
(red)
C and ρ

(red)
BC , respectively.

IV. DYNAMICS OF ENTANGLEMENT BETWEEN AB AND C OSCILLATORS

In this section we assume AB oscillators are inaccessible. Then, the effective state for C

oscillator is reduced state, which is given by

ρ
(red)
C (x3, x

′
3 : t) = trABρABC ≡

∫
dx1dx2ρABC(x1, x2, x3 : x1, x2, x

′
3 : t). (4.1)

Performing the integration explicitly one can show directly

ρ
(red)
C (x, x′ : t) =

(
ω′1ω

′
+ω
′
−

πΩ

)1/2

exp

[
− 1

Ω

{
(R1 − iI1)x2 + (R1 + iI1)x′2 − 2Y xx′

}]
(4.2)
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where

Ω =
1

3

[
A2

+Z
2
+ω
′
1ω
′
+ + A2

−Z
2
−ω
′
1ω
′
− + ω′+ω

′
−
]

Y =
|v1|2

36

(
A2

+Z
2
+ω
′
+ + A2

−Z
2
−ω
′
−
)

+
(J13 − J23)2ω′1

12

(
A4

+Z
2
+|v+|2 + A4

−Z
2
−|v−|2

)
+z2A2

+A
2
−(J13 − J23)4

(
A2

+|v+|2ω′− + A2
−ω
′
+|v−|2

)
(4.3)

+
A2

+A
2
−

6
(J13 − J23)2

[
1

2
Z+Z−ω

′
1(v+v

∗
− + v∗+v−)− zZ+ω

′
+(v1v

∗
− + v∗1v−)

+zZ−ω
′
−(v1v

∗
+ + v∗1v+)

]
R1 =

1

2
ω′1ω

′
+ω
′
− + Y

I1 = A2
+A

2
−(J13 − J23)2z

[
Z+ω

′
1ω
′
+

˙b−
b−
− Z−ω′1

˙b+

b+

ω′− + 2z
ḃ1

b1

ω′+ω
′
−

]

with Z± = 2J12 − J13 − J23 ± 2z. It is useful to note

Z+Z− = −3(J13 − J23)2. (4.4)

It is easy to show

tr
[
ρ

(red)
C

]
≡
∫
dxρ

(red)
C (x, x : t) = 1. (4.5)

This guarantees the probability conservation of the C-oscillator reduced system. Since ρ
(red)
C

is a reduced state, it is in general mixed state. The mixedness of ρ
(red)
C can be measured by

tr

[(
ρ

(red)
C

)2
]
≡
∫
dxdx′ρ

(red)
C (x, x′ : t)ρ

(red)
C (x′, x : t) =

√
ω′1ω

′
+ω
′
−

2(R1 + Y )
. (4.6)

Thus, if Y = 0, ρ
(red)
C becomes pure state. It is completely mixed state when ω′1ω

′
+ω
′
− = 0.

The entanglement of ρ
(red)
C can be computed by solving the eigenvalue equation∫
dx′ρ

(red)
C (x, x′ : t)fn(x′, t) = pn(t)fn(x, t). (4.7)

One can show that the normalized eigenfunction is

fn(x, t) =
1√
2nn!

( ε
π

)1/4

Hn(
√
εx)e−

ε
2
x2+i

I1
Ω
x2

(4.8)

where

ε = 2

√
R2

1 − Y 2

Ω2
, (4.9)
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and the corresponding eigenvalue is

pn(t) = [1− ξ(t)] ξn(t) (4.10)

where

ξ(t) =
Y

R1 +
√
R2

1 − Y 2
. (4.11)

Thus Rényi and von Neumann entropies are given by

SCα ≡
1

1− α
ln tr

[(
ρ

(red)
C

)α]
=

1

1− α
ln

(1− ξ)α

1− ξα
(4.12)

SCvon = lim
α→1

SCα = − ln(1− ξ)− ξ

1− ξ
ln ξ.

These quantities measure the entanglement between AB-oscillators and C-oscillator. The

numerical analysis of these quantities will be explored later in the quenched models.

V. DYNAMICS OF ENTANGLEMENT BETWEEN A AND BC OSCILLATORS

In this section we assume only A oscillator is inaccessible. Then, the effective state for

BC oscillator is reduced state, which is given by

ρ
(red)
BC (x2, x3 : x′2, x

′
3 : t) = trAρABC ≡

∫
dx1ρABC(x1, x2, x3 : x1, x

′
2, x
′
3 : t). (5.1)

After long and tedious calculation one can show

ρ
(red)
BC (x1, x2 : y1, y2 : t) =

(
ω′1ω

′
+ω
′
−

π2A

)1/2

e−
Γ
A (5.2)

where

A = G11 +G∗11 =
ω′1
3

+ ω′+A
2
+(−J12 + J23 − z)2 + ω′−A

2
−(−J12 + J23 + z)2 (5.3)

Γ = (α1 − iβ1)x2
1 + (α1 + iβ1)y2

1 + (α2 − iβ2)x2
2 + (α2 + iβ2)y2

2

+2(α3 − iβ3)x1x2 + 2(α3 + iβ3)y1y2 − 2γ11x1y1 − 2γ22x2y2

−2(α4 − iβ4)x1y2 − 2(α4 + iβ4)x2y1.

In Γ αi, βi, and γij are all real quantities and have long expressions. Their explicit expressions

are given in appendix A. Here, we present several useful formula

α1 − γ11 =
A2

+

6
Z2

+ω
′
1ω
′
+ +

A2
−

6
Z2
−ω
′
1ω
′
− + 2A2

+A
2
−z

2(J13 − J23)2ω′+ω
′
− (5.4)

α2 − γ22 =
A2

+

6
Y 2

+ω
′
1ω
′
+ +

A2
−

6
Y 2
−ω
′
1ω
′
− + 2A2

+A
2
−z

2(J13 − J23)2ω′+ω
′
−

α3 − α4 =
A2

+

6
Y+Z+ω

′
1ω
′
+ +

A2
−

6
Y−Z−ω

′
1ω
′
− − 2A2

+A
2
−z

2(J13 − J23)2ω′+ω
′
−

9



where Y± = J12 + J13 − 2J23 ± z. Using Eq. (5.4) it is straight to show

(α1 − γ11)(α2 − γ22)− (α3 − α4)2 =
ω′1ω

′
+ω
′
−A

4
. (5.5)

Then, it is easy to show

tr
[
ρ

(red)
BC

]
≡
∫
dx1dx2ρ

(red)
BC (x1, x2 : x1, x2 : t) = 1. (5.6)

Also one can compute the measure of the mixedness for ρ
(red)
BC , which is

tr

[(
ρ

(red)
BC

)2
]
≡
∫
dx1dx2dy1dy2ρ

(red)
BC (x1, x2 : y1, y2 : t)ρ

(red)
BC (y1, y2, x1, x2 : t)

=
ω′1ω

′
+ω
′
−A

4

√
α2

2 − γ2
22

n2
1 − n2

2

(5.7)

where

n1 = α1(α2
2 − γ2

22)− α2(α2
3 + α2

4) + 2γ22α3α4 (5.8)

n2 = γ11(α2
2 − γ2

22) + γ22(α2
3 + α2

4)− 2α2α3α4.

In order to discuss the entanglement between A-oscillator and BC-oscillator we should

solve the eigenvalue equation∫
dy1dy2ρ

(red)
BC (x1, x2 : y1, y2 : t)fmn(y1, y2 : t) = pmn(t)fmn(x1, x2 : t). (5.9)

If the oscillator A is accessible, one can compute the Rényi and von Neumann entropies

of ρ
(red)
BC more easily without solving Eq. (5.9) because the total state ρABC is pure. From

Schmidt decomposition we know that the eigenvalue spectrum and hence, entropies of ρ
(red)
BC

are exactly the same with those of ρ
(red)
A . Since, however, the oscillator A is assumed to be

inaccessible, we should compute the entropies of ρ
(red)
BC by solving Eq. (5.9) directly. For

completeness we compute the Rényi and von Neumann entropies of ρ
(red)
BC again in appendix

B by making use of ρ
(red)
A .

In order to solve the eigenvalue equation (5.9) we define

fmn(x1, x2 : t) = e
i
A(β1x2

1+β2x2
2+2β3x1x2)gmn(x1, x2 : t). (5.10)

Then, Eq. (5.9) reduces to

CN e
− 1
A(α1x2

1+α2x2
2+2α3x1x2) (5.11)

×
∫
dy1dy2e

− 1
A(α1y2

1+α2y2
2+2α3y1y2−2ay1−2by2)gmn(y1, y2 : t) = pmn(t)gmn(x1, x2 : t)
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where

a(t) = γ11x1 + (α4 + iβ4)x2 b(t) = (α4 − iβ4)x1 + γ22x2 (5.12)

and CN is a multiplicative constant. From now on the multiplicative constant will be

absorbed into CN although it is changed due to Jacobian factors. It can be fixed after

calculation is complete by making use of Eq. (5.6).

Now, we define new coordinates

ỹ1 =
1

N
[2α3y1 + {η − (α1 − α2)} y2] , ỹ2 =

1

N
[−{η − (α1 − α2)} y1 + 2α3y2] (5.13)

x̃1 =
1

N
[2α3x1 + {η − (α1 − α2)}x2] , x̃2 =

1

N
[−{η − (α1 − α2)}x1 + 2α3x2]

where

η =
√

(α1 − α2)2 + 4α2
3 N 2 = 2η[η − (α1 − α2)]. (5.14)

Then the eigenvalue equation (5.11) becomes

CN e
− 1
A(η+x̃1

2+η−x̃2
2) (5.15)

×
∫
dỹ1dỹ2e

− 1
A(η+ỹ1

2+η−ỹ2
2−2

∑2
i,j=1 cij x̃iỹj)gmn(ỹ1, ỹ2 : t) = pmn(t)gmn(x̃1, x̃2 : t)

where

η± =
(α1 + α2)± η

2
(5.16)

and

c11 =
1

N 2

[
4α2

3γ11 + 4α3α4 {η − (α1 − α2)}+ γ22 {η − (α1 − α2)}2] (5.17)

c22 =
1

N 2

[
4α2

3γ22 − 4α3α4 {η − (α1 − α2)}+ γ11 {η − (α1 − α2)}2]
c12 =

1

N 2

[
4α2

3α4 − 2α3(γ11 − γ22) {η − (α1 − α2)} − α4 {η − (α1 − α2)}2 − iβ4N 2
]

with c21 = c∗12. In order to simplify Eq. (5.15) some more we define new coordinates again

as

x̄1 =
√
η+x̃1 x̄2 =

√
η−x̃2 (5.18)

ȳ1 =
√
η+ỹ1 ȳ2 =

√
η−ỹ2.

Then Eq. (5.15) becomes

CN e
− 1
A(x̄1

2+x̄2
2)
∫
dȳ1dȳ2e

− 1
A(ȳ1

2+ȳ2
2−2

∑2
i,j=1 κij x̄iȳj)gmn(ȳ1, ȳ2 : t)

= pmn(t)gmn(x̄1, x̄2 : t) (5.19)
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where

κ11 =
c11

η+

κ22 =
c22

η−
κ12 =

c12√
η+η−

κ21 =
c21√
η+η−

. (5.20)

Since κij is a hermitian matrix, it can be diagonalized by introducing an appropriate unitary

matrix. Using the unitary matrix we define new coordinates finally as

X1 =
1

Nκ
[2κ21x̄1 + {χ− (κ11 − κ22)} x̄2] (5.21)

X2 =
1

Nκ
[−{χ− (κ11 − κ22)} x̄1 + 2κ12x̄2]

Y1 =
1

Nκ
[2κ21ȳ1 + {χ− (κ11 − κ22)} ȳ2]

Y2 =
1

Nκ
[−{χ− (κ11 − κ22)} ȳ1 + 2κ12ȳ2]

where

χ =
√

(κ11 − κ22)2 + 4|κ12|2 N 2
κ = 2χ [χ− (κ11 − κ22)] . (5.22)

In terms of the new coordinates Eq. (5.19) is simplified as

CN e
− 1
A

(X2
1 +X2

2 ) (5.23)

×
∫
dY1dY2e

− 1
A [Y 2

1 +Y 2
2 −2(χ+X1Y1+χ−X2Y2)]gmn(Y1, Y2 : t) = pmn(t)gmn(X1, X2 : t)

where

χ± =
1

2
[(κ11 + κ22)± χ] . (5.24)

Then Eq. (5.23) is divided into two single variable eigenvalue equations as

L1e
− 1
A
X2

1

∫
dY1e

− 1
A(Y 2

1 −2χ+X1Y1)g1,m(Y1, t) = q1,m(t)g1,m(X1, t) (5.25)

L2e
− 1
A
X2

2

∫
dY2e

− 1
A(Y 2

2 −2χ−X2Y2)g2,n(Y2, t) = q2,n(t)g2,n(X2, t)

where

L1L1 = CN pmn(t) = q1,m(t)q2,n(t) (5.26)

gmn(X1, X2 : t) = g1,m(X1, t)g2.n(X2, t).

Each eigenvalue equation in Eq. (5.25) can be solved easily. Then, the normalized eigen-

function of ρ
(red)
BC is

gmn(X1, X2 : t) (5.27)

=

[
1√

2mm!

(ε1
π

)1/4

Hm(
√
ε1X1)e−

ε1
2
X2

1

] [
1√
2nn!

(ε2
π

)1/4

Hn(
√
ε2X2)e−

ε2
2
X2

2

]
12



and the corresponding eigenvalue is

pmn(t) =

[
L1

√
π

1
A

+ ε1
2

( 1
A
− ε1

2
1
A

+ ε1
2

)m/2][
L2

√
π

1
A

+ ε2
2

( 1
A
− ε2

2
1
A

+ ε2
2

)n/2]
(5.28)

where
ε1
2

=
1

A

√
1− χ2

+

ε2
2

=
1

A

√
1− χ2

−. (5.29)

Since Eq. (5.6) guarantees
∑

mn pm,n(t) = 1, one can fix CN = L1L2. Then, pmn(t) becomes

pmn(t) = (1− ξ1)ξm1 (1− ξ2)ξn2 (5.30)

where

ξ1 =
χ+

1 +
√

1− χ2
+

ξ2 =
χ−

1 +
√

1− χ2
−
. (5.31)

Thus Rényi and von Neumann entropies for ρ
(red)
BC are given by

SBCα ≡ 1

1− α
ln tr

[(
ρ

(red)
BC

)α]
= S1,α + S2,α (5.32)

SBCvon ≡ lim
α→1

SBCα = S1,von + S2,von

where

S1,α =
1

1− α
ln

(1− ξ1)α

1− ξα1
S2,α =

1

1− α
ln

(1− ξ2)α

1− ξα2
(5.33)

S1,von = − ln(1− ξ1)− ξ1

1− ξ1

ln ξ1 S2,von = − ln(1− ξ2)− ξ2

1− ξ2

ln ξ2.

VI. NUMERICAL ANALYSIS : SUDDEN QUENCHED MODELS

Using the results of the previous sections we examine in this section the dynamics of

the mixedness and entanglement for ρ
(red)
C and ρ

(red)
BC . Although we can consider more gen-

eral time-dependent cases by solving the Ermakov equation (3.4) numerically, we confine

ourselves in this section into the more simple sudden quenched model, where the time-

dependence of frequency parameter K0(t) and coupling constants Jij(t) arises from abrupt

change at t = 0 such as

K0(t) =

 K0,i t = 0

K0,f t > 0
Jij(t) =

 Jij,i t = 0

Jij,f t > 0.
(6.1)
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FIG. 1: (Color online) The time-dependence of mixedness (Fig. 1(a)) and von Neumann entropy

(Fig. 1(b)) when the quenched parameters are chosen as K0,i = 4, K0,f = 6, J12,i = 1, J12,f = 2,

J13,i = 3, J13,f = 4, J23,i = 8, and J23,f = 7. The red and blue lines correspond to ρ
(red)
C and ρ

(red)
BC

respectively. In order to examine the dependence of multi-frequencies we plot the time-dependence

of von Neumann entropy for ρ
(red)
C (Fig. 1(c)) and ρ

(red)
BC (Fig. 1(d)) along the long time interval.

Then, ω1(t) and ω±(t) defined in the diagonal Hamiltonian (2.10) become

ω1,i =
√
K0,i ω1,f =

√
K0,f (6.2)

ω±,i =
√
K0,i + J12,i + J13,i + J23,i ± zi

ω±,f =
√
K0,f + J12,f + J13,f + J23,f ± zf

where zi and zf are initial and later-time values of z(t). Thus the scale factors bα(t) (α =

1,±) are given by

bα(t) =

√
ω2
α,f − ω2

α,i

2ω2
α,f

cos (2ωα,f t) +
ω2
α,f + ω2

α,i

2ω2
α,f

. (6.3)

The trigonometric functions in bα(t) make oscillatory behavior in the dynamics of mixedness

and entanglement.
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FIG. 2: (Color online) The time-dependence of mixedness (Fig. 2(a)) and von Neumann entropy

(Fig. 2(b)) when the quenched parameters are chosen as K0,i = 0.1, K0,f = 0.1, J12,i = 1,

J12,f = 2, J13,i = 2.5, J13,f = 3.5, J23,i = 3, and J23,f = 4. The red and blue lines correspond to

ρ
(red)
C and ρ

(red)
BC respectively. In order to examine the dependence of multi-frequencies we plot the

time-dependence of von Neumann entropy for ρ
(red)
C (Fig. 2(c)) and ρ

(red)
BC (Fig. 2(d)) along the

long time interval. Since constant K0 gives b1(t) = 1, the effect of multi-frequency seems to be

reduced in Fig. 2(c) and Fig. 2(d) compared to Fig. 1(c) and Fig. 1(d).

First, we choose K0,i = 4, K0,f = 6, J12,i = 1, J12,f = 2, J13,i = 3, J13,f = 4, J23,i = 8,

and J23,f = 7. In this case ω1,i = 2, ω1,f = 2.45, ω+,i = 4.72, ω+,f = 4.83, ω−,i = 3.12, and

ω−,f = 3.83. The time-dependence of tr

[(
ρ

(red)
BC

)2
]

(blue line) and tr

[(
ρ

(red)
C

)2
]

(red line) is

plotted in Fig. 1(a). As expected both exhibit oscillatory behavior in time. In the full-time

range tr

[(
ρ

(red)
BC

)2
]

is larger than tr

[(
ρ

(red)
C

)2
]
. This means ρ

(red)
C is more mixed than ρ

(red)
BC .

This can be understood as follows. The total state ρABC in Eq. (3.10) is pure state. Since

ρ
(red)
C and ρ

(red)
BC are effective quantum states when two or one oscillator is lost respectively,

one can expect ρ
(red)
C is more mixed than ρ

(red)
BC . Fig. 1(b) shows the time-dependence of SCvon

(red line) and SBCvon (blue line). As expected both exhibit oscillatory behavior in time due
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to bα(t). In the full-time range SCvon is larger than SBCvon. The multi-frequency dependence of

von Neumann and Rényi entropies can be seen explicitly if we increases the time domain.

Fig. 1(c) and Fig. 1(d) are time-dependence of SCvon and SBCvon in 0 ≤ t ≤ 50. These figures

clearly exhibit the multi-frequency dependence.

Next, we choose time-independent K0 as K0 = 0.1. Thus, ω1 is also time-independent

as ω1 = 0.316. The remaining parameters are chosen as J12,i = 1, J12,f = 2, J13,i = 2.5,

J13,f = 3.5, J23,i = 3, and J23,f = 4. In this case ω± become ω+,i = 2.90, ω−,i = 2.19,

ω+,f = 3.38, and ω−,f = 2.79. With these parameters the dynamics of mixedness and

entanglement are plotted in Fig. 2. In Fig. 2(a) the time-dependence of tr

[(
ρ

(red)
BC

)2
]

(blue

line) and tr

[(
ρ

(red)
C

)2
]

(red line) is plotted. Unlike the previous case tr

[(
ρ

(red)
BC

)2
]

is not

always larger than tr

[(
ρ

(red)
C

)2
]

in the full-time range even though the average value of

tr

[(
ρ

(red)
BC

)2
]

is larger than that of tr

[(
ρ

(red)
C

)2
]
. The time-dependence of SCvon (red line)

and SBCvon (blue line) is plotted in Fig. 2(b). Similarly, SCvon is not always larger than SBCvon

even though it is right in most time interval. In order to examine the effect of constant

ω1 we plot SCvon (Fig. 2(c)) and SBCvon (Fig. 2(d)) with a long range of time (0 ≤ t ≤ 50).

Compared to Fig. 1(c) and Fig. 1(d) the effect of multi-frequency seems to be reduced in

Fig. 2(c) and Fig. 2(d).

For completeness, finally, we examine the effect of negative frequency parameter although

it is not physical situation. For this we choose K0,i = 0.1 and K0,f = −0.1, which result in

ω1,i = 0.316 and ω1,f = 0, 316i. The pure imaginary value of ω1,f changes the cosine factor

in b1(t) into hyperbolic function. Thus, the dynamics of mixedness and entanglement should

exhibit oscillatory and exponential behaviors. The remaining parameters are chosen as the

same with second example. Then ω± become ω+,i = 2.90, ω−,i = 2.19, ω+,f = 3, 35, and

ω−,f = 2.76. In Fig. 3(a) the time-dependence of tr

[(
ρ

(red)
BC

)2
]

(blue line) and tr

[(
ρ

(red)
C

)2
]

(red line) is plotted. As expected both exhibit exponential decay with oscillatory behavior.

Like the previous models tr

[(
ρ

(red)
BC

)2
]

is larger than tr

[(
ρ

(red)
C

)2
]

in most time intervals.

In Fig. 3(b) the time-dependence of SCvon (red line) and SBCvon (blue line) is plotted. As

expected both also exhibit exponential behavior with oscillation. The unexpected fact is

the fact that the von Neumann entropies increase with increasing time. Usually completely

mixed state has zero entanglement in the qubit system. Thus we expect the decreasing
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FIG. 3: (Color online) The time-dependence of mixedness (Fig. 3(a)) and von Neumann entropy

(Fig. 3(b)) when the quenched parameters are chosen as K0,i = 0.1, K0,f = −0.1, J12,i = 1,

J12,f = 2, J13,i = 2.5, J13,f = 3.5, J23,i = 3, and J23,f = 4. The red and blue lines correspond to

ρ
(red)
C and ρ

(red)
BC respectively. Since negative K0,f yields pure imaginary ω1,f , the mixedness and

von Neumann entropy exhibit exponential behavior with oscillation generated by ω+ and ω−.

behavior of the von Neumann entropies with increasing time. Fig. 3(b) shows an opposite

behavior. Similar behavior can be seen in the two coupled oscillator system with imaginary

frequency (see Fig. 2(a) of Ref. [32]). Probably, this is mainly due to the fact that this

third example is unphysical because of negative frequency parameter.

VII. CONCLUSIONS

The dynamics of mixedness and entanglement is derived analytically by solving the TDSE

of the three coupled harmonic oscillator system when the frequency parameter K0 and cou-

pling constants Jij are arbitrarily time-dependent. For the calculation we assume that part

of oscillator(s) is inaccessible. Thus we derive the dynamics of entanglement between in-

accessible and accessible oscillators. To show the dynamics pictorially we introduce three

sudden quenched models, where Ermakov equation (3.4) can be solved analytically. As ex-

pected due to the scale factors bj(t), both mixedness and entanglement exhibit oscillatory

behavior with multi-frequencies. It is shown that the mixedness for the case of one inacces-

sible oscillator is larger than that for the case of two inaccessible oscillators in the most time

interval. Contrary to the mixedness entanglement for the case of one inaccessible oscillator

is smaller than that for the case of two inaccessible oscillators in the most time interval.
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It is natural to extend this paper to n-coupled harmonic oscillator system with arbitrary

time-dependent frequency and coupling parameters, whose Hamiltonian can be written as

H =
1

2

n∑
i=1

p2
i +

1

2

[
K0(t)

n∑
i=1

x2
i +

n∑
i<j

Jij(t)(xi − xj)2

]
. (7.1)

Generalizing the method presented in this paper we think the TDSE of this n-oscillator

system can be solved analytically. Assuming that m-oscillator(s) is inaccessible, it seems

to be possible to derive the time-dependence of entanglement between inaccessible and

accessible oscillators. It is of interest to examine the effect of m with fixed n or effect

of n with fixed m in the dynamics of entanglement.

Another interesting issue related to this paper is how to compute the tripartite entan-

glement of the total state (3.10). In qubit system it is possible to compute the three-tangle

for any three-qubit pure state[16]. However, this cannot be directly applied to our realistic

system. Probably, we need new computable entanglement measure to explore this issue. We

hope to visit this issue in the future.
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Appendix A

The explicit expressions of quantities αi, βi, and γij in Eq. (5.3) are as follows:

α1 =
1

36
|v1|2 +

1

4
|v+|2A4

+(−J12 + J23 − z)2(J12 − J13 + z)2 (A.1)

+
1

4
|v−|2A4

−(−J12 + J23 + z)2(J12 − J13 − z)2

+
A2

+

6

[
Z2

+ω
′
1ω
′
+ +

(
ω′1ω

′
+ +

ḃ1

b1

˙b+

b+

)
(J12 − J13 + z)(−J12 + J23 − z)

]

+
A2
−

6

[
Z2
−ω
′
1ω
′
− +

(
ω′1ω

′
− +

ḃ1

b1

˙b−
b−

)
(J12 − J13 − z)(−J12 + J23 + z)

]

+
A2

+A
2
−

2

[
4z2(J13 − J23)2ω′+ω

′
− +

(
ω′+ω

′
− +

˙b+

b+

˙b−
b−

)
(J12 − J13 + z)

×(J12 − J13 − z)(−J12 + J23 + z)(−J12 + J23 − z)

]

β1 =
A2

+

6
Z+

[
ω′1

˙b+

b+

(J12 − J13 + z)− ḃ1

b1

ω′+(−J12 + J23 − z)

]
(A.2)

+
A2
−

6
Z−

[
ω′1

˙b−
b−

(J12 − J13 − z)− ḃ1

b1

ω′−(−J12 + J23 + z)

]

+A2
+A

2
−z(J13 − J23)

[
ω′+

˙b−
b−

(J12 − J13 − z)(−J12 + J23 − z)

−
˙b+

b+

ω′−(J12 − J13 + z)(−J12 + J23 + z)

]

α2 =
1

36
|v1|2 +

1

4
|v+|2A4

+(J13 − J23)2(−J12 + J23 − z)2 (A.3)

+
1

4
|v−|2A4

−(J13 − J23)2(−J12 + J23 + z)2

+
A2

+

6

[
(J12 + J13 − 2J23 + z)2ω′1ω

′
+ +

(
ω′1ω

′
+ +

ḃ1

b1

˙b+

b+

)
(J13 − J23)(−J12 + J23 − z)

]

+
A2
−

6

[
(J12 + J13 − 2J23 − z)2ω′1ω

′
− +

(
ω′1ω

′
− +

ḃ1

b1

˙b−
b−

)
(J13 − J23)(−J12 + J23 + z)

]

+
A2

+A
2
−

2
(J13 − J23)2

[
4z2ω′+ω

′
− +

(
ω′+ω

′
− +

˙b+

b+

˙b−
b−

)
(−J12 + J23 + z)(−J12 + J23 − z)

]
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β2 =
A2

+

6
(J12 + J13 − 2J23 + z)

[
ω′1

˙b+

b+

(J13 − J23)− ḃ1

b1

ω′+(−J12 + J23 − z)

]
(A.4)

+
A2
−

6
(J12 + J13 − 2J23 − z)

[
ω′1

˙b−
b−

(J13 − J23)− ḃ1

b1

ω′−(−J12 + J23 + z)

]

−A2
+A

2
−z(J13 − J23)2

[
ω′+

˙b−
b−

(−J12 + J23 − z)−
˙b+

b+

ω′−(−J12 + J23 + z)

]

α3 =
1

36
|v1|2 +

1

4
|v+|2A4

+(J13 − J23)(J12 − J13 + z)(−J12 + J23 − z)2 (A.5)

+
1

4
|v−|2A4

−(J13 − J23)(J12 − J13 − z)(−J12 + J23 + z)2

+
A2

+

12

[
2Z+(J12 + J13 − 2J23 + z)ω′1ω

′
+ −

(
ω′1ω

′
+ +

ḃ1

b1

˙b+

b+

)
(−J12 + J23 − z)2

]

+
A2
−

12

[
2Z−(J12 + J13 − 2J23 − z)ω′1ω

′
− −

(
ω′1ω

′
− +

ḃ1

b1

˙b−
b−

)
(−J12 + J23 + z)2

]

+
A2

+A
2
−

2
(J13 − J23)

[
− 4z2(J13 − J23)ω′+ω

′
− +

(
ω′+ω

′
− +

˙b+

b+

˙b−
b−

)
(J12 − J13)

×(−J12 + J23 + z)(−J12 + J23 − z)

]

β3 =
A2

+

12

[
ω′1

˙b+

b+

{
2(J13 − J23)(J12 − J13 + z) + (−J12 + J23 − z)2

}
(A.6)

+3
ḃ1

b1

ω′+(−J12 + J23 − z)2

]
+
A2
−

12

[
ω′1

˙b−
b−

{
2(J13 − J23)(J12 − J13 − z) + (−J12 + J23 + z)2

}
+3

ḃ1

b1

ω′−(−J12 + J23 + z)2

]
+
A2

+A
2
−

2
z(J13 − J23)

[
− ω′+

˙b−
b−

(−J12 + J23 − z)(J12 − 2J13 + J23 − z)

+
˙b+

b+

ω′−(−J12 + J23 + z)(J12 − 2J13 + J23 + z)

]
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α4 =
1

36
|v1|2 +

1

4
|v+|2A4

+(J13 − J23)(J12 − J13 + z)(−J12 + J23 − z)2 (A.7)

+
1

4
|v−|2A4

−(J13 − J23)(J12 − J13 − z)(−J12 + J23 + z)2

−
A2

+

12
(−J12 + J23 − z)2

(
ω′1ω

′
+ +

ḃ1

b1

˙b+

b+

)
−
A2
−

12
(−J12 + J23 + z)2

(
ω′1ω

′
− +

ḃ1

b1

˙b−
b−

)

+
A2

+A
2
−

2
(J12 − J13)(J13 − J23)(−J12 + J23 + z)(−J12 + J23 − z)

(
ω′+ω

′
− +

˙b+

b+

˙b−
b−

)

β4 =
A2

+

12
(−J12 + J23 − z)(J12 − 2J13 + J23 + z)

(
ω′1

˙b+

b+

− ḃ1

b1

ω′+

)
(A.8)

+
A2
−

12
(−J12 + J23 + z)(J12 − 2J13 + J23 − z)

(
ω′1

˙b−
b−
− ḃ1

b1

ω′−

)

−
A2

+A
2
−

2
z(J13 − J23)(−J12 + J23 + z)(−J12 + J23 − z)

(
ω′+

˙b−
b−
−

˙b+

b+

ω′−

)

γ11 =
1

36
|v1|2 +

1

4
|v+|2A4

+(J12 − J13 + z)2(−J12 + J23 − z)2 (A.9)

+
1

4
|v−|2A4

−(J12 − J13 − z)2(−J12 + J23 + z)2

+
A2

+

12
(v1v

∗
+ + v∗1v+)(J12 − J13 + z)(−J12 + J23 − z)

+
A2
−

12
(v1v

∗
− + v∗1v−)(J12 − J13 − z)(−J12 + J23 + z)

+
A2

+A
2
−

4
(v+v

∗
− + v∗+v−)(J12 − J13 + z)(J12 − J13 − z)(−J12 + J23 + z)(−J12 + J23 − z)

γ22 =
1

36
|v1|2 +

1

4
|v+|2A4

+(J13 − J23)2(−J12 + J23 − z)2 (A.10)

+
1

4
|v−|2A4

−(J13 − J23)2(−J12 + J23 + z)2

+
A2

+

12
(v1v

∗
+ + v∗1v+)(J13 − J23)(−J12 + J23 − z)

+
A2
−

12
(v1v

∗
− + v∗1v−)(J13 − J23)(−J12 + J23 + z)

+
A2

+A
2
−

4
(v+v

∗
− + v∗+v−)(J13 − J23)2(−J12 + J23 + z)(−J12 + J23 − z).
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Appendix B

Since ρABC is pure state, it is easy to show that the Rényi and von Neumann entropies

of ρ
(red)
BC are exactly the same with those of ρ

(red)
A . Thus, we can compute the entropies of

ρ
(red)
BC by solving ∫

dyρ
(red)
A (x, y : t)gn(y : t) = qn(t)gn(x : t). (B.1)

It is straightforward to show that the explicit expression of ρ
(red)
A is

ρA(red)(x, y : t) (B.2)

=

∫
dx2dx3ρABC(x, x2, x3 : y, x2, x3 : t)

=

(
ω′1ω

′
+ω
′
−

πΩA

)1/2

exp

[
− 1

ΩA

{
(RA − iIA)x2 + (RA + iIA)y2 − 2YAxy

}]
where

ΩA =
1

3

[
A2

+X
2
+ω
′
1ω
′
+ + A2

−X
2
−ω
′
1ω
′
− + ω′+ω

′
−
]

(B.3)

YA =
|v1|2

36

(
A2

+X
2
+ω
′
+ + A2

−X
2
−ω
′
−
)

+
ω′1
12

[
A4

+X
2
+(−J12 + J23 − z)2|v+|2 + A4

−X
2
−(−J12 + J23 + z)2|v−|2

]
+A2

+A
2
−z

2(J13 − J23)2
[
A2

+(−J12 + J23 − z)2|v+|2ω′− + A2
−(−J12 + J23 + z)2ω′+|v−|2

]
+
A2

+A
2
−

4
(J13 − J23)

[
− (J12 − J13)(−J12 + J23 + z)(−J12 + J23 − z)ω′1(v+v

∗
− + v∗+v−)

+
2

3
zX+(−J12 + J23 + z)ω′+(v1v

∗
− + v∗1v−)− 2

3
zX−(−J12 + J23 − z)ω′−(v1v

∗
+ + v∗1v+)

]
RA = YA +

1

2
ω′1ω

′
+ω−

IA = −A2
+A

2
−z(J13 − J23)

[
X+(−J12 + J23 + z)ω′1ω

′
+

ḃ−
b−
−X−(−J12 + J23 − z)ω′1

ḃ+

b+

ω′−

−2z(J13 − J23)
ḃ1

b1

ω′+ω
′
−

]
with X± = J12 + J23 − 2J13 ± z. It is useful to note X+X− = −3(J12 − J13)(J13 − J23) and

X±(−J12 + J23 ∓ z) = −(J12 − J13)Z± X±(−J12 + J23 ± z) = −(J13 − J23)W± (B.4)

where Z± = 2J12 − J13 − J23 ± 2z and W± = 2J23 − J12 − J13 ± 2z.

24



Following the case of ρ
(red)
C it is straightforward to show that the eigenvalue of Eq. (B.1)

is qn(t) = (1− ξA)ξnA and, the Rényi and von Neumann entropies of ρ
(red)
BC are given by

SBCα ≡ 1

1− α
ln tr

[(
ρ

(red)
BC

)α]
=

1

1− α
ln

(1− ξA)α

1− ξαA
(B.5)

SBCvon = lim
α→1

SBCα = − ln(1− ξA)− ξA
1− ξA

ln ξA

where

ξA =
YA

RA +
√
R2
A − Y 2

A

. (B.6)

Although we have not proved analytically that Eq. (B.5) and Eq. (5.32) are exactly

the same due to long expressions introduced in appendix A, this coincidence is confirmed

numerically when plotting Fig. 1(d), Fig. 2(d), and Fig. 3(b).
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