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Abstract

A topic about synthesis of quantum images is proposed, and a specific phase rotation
transform constructed is adopted to theoretically realise the synthesis of two quantum images.
The synthesis strategy of quantum images comprises three steps, which include: (1) In the stage
of phase extraction, we obtain the phases of the state of the quantum image by transforming
the state of the quantum image to prepare the conditions for multiple phases extraction. (2)
In the stage of rotation operator construction, the phases obtained in the first stage are used
to construct the rotation operator where a mechanism is introduced into it to reduce the
phase overflow. (3) In the stage of application of the rotation operator, we apply the operator
constructed in the second stage on the state of quantum image to get a goal state. Additionally,
numerical analysis gives the joint uncertainty relation of the pixel of the synthesized quantum
image. The analysis result about the compression ratio indicates that the phase rotation
transform and the overflow control mechanism are effective.

Keywords Quantum image, image synthesis, phase errors, multiple phase estimation

1 Introduction

Since quantum world tools have been shown to be more powerful than tools of the classical world
in many areas, it is natural, and actually very important, to try to explore [1, 2, 3] in depth the
methods and properties of the quantum image processing.

Quantum images have already been prepared with several mature technologies using different
methods in laboratories. For example, four wave mixing (FWM) [4] is the widely used one [5].
On the other side, in spite of the fact that quantum images can be easily prepared in physical
laboratory, but how to specify the information of a quantum images in a quantum computer [6, 7]
remains a problem. Recently, some papers have discussed relevant topics, such as [8, 9, 16, 17],
where the authors propose or summarize different mathematic forms of the state representation of
quantum images. Typically, for example, flexible representation of quantum images (FRQI) [8, 9]
which uses a single qubit to encode the grey level, novel enhanced quantum representation(NEQR)
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[10] which improves the expression with two qubits,binary key image generation [11], and flexible
quantum representation for grey-level quantum images (FQRGI) [12] et al. Based on these types
of state representation of quantum image, different operations to the image are explored, such as
[13, 14, 15, 18, 19, 20, 21]. Jiang et al. [21] creatively propose a quantum version algorithm based
on the improved NEQR [10] to implement the scaling of the quantum image. Caraiman et al. [22]
realise the image segmentation on a quantum computer.

Image synthesis is an important topic in area of image processing. One of the most important
applications of image synthesis is information hiding [23, 24, 25, 26]. Song et al. [27] proposed an
algorithm for information hiding via introducing the quantum image embedding operation while the
images are represented as a watermark and a carrier. Actually, since classical synthesis has widely
applications in the reality [28, 29], we believe that more quantum image synthesis algorithms to be
explored in the future have great significance.

In the present paper, a concrete procedure of image synthesis is described. Since the image is
constituted with pixels, the essence of quantum image synthesis is actually pixel synthesis. That’s
why our paper could analyzes the joint uncertainty of the synthesized pixel in section 4.2.

One basic problem for quantum image synthesis is handling of the brightness of pixels. Based
on the state representation of quantum images and phase rotation operation adopted, the phases
are the only available parameters to be chosen for implementing the grey-level control, so the image
synthesis is equivalent to the corresponding pixel synthesis of two quantum images, and pixels
synthesis is equivalent to the synthesis of two phases. So how to ensure the precision of the phase
extracting from the state of the quantum image, and how to effectively restrain the phases to make
them in a specified range are the critical point for us to get a synthesized image successfully. The
analysis about effectiveness of overflow control is in section 4.3.

The rest of the paper is organized as follows. Section 2 introduces the preliminary knowledge
about the state representation of the quantum images. Section 3 describes the algorithm of quantum
image synthesis. Section 4 analyzes the joint uncertainty of the pixel of the synthesized image, and
discuss the effectiveness of phase compression. The last two parts are comparison and conclusion,
respectively.

2 Preliminary

2.1 Fundamental theory of quantum image transform

The state representation of quantum images has to be consistent with images produced by tech-
nologies and convenient for the theoretical computation in the future. Concretely, the state repre-
sentation of quantum images should captures and reflects the following facts.

Facts

(a) Quantum image can be expressed, using complex amplitudes mathematical expression, in
quantum optics.

(b) Quantum image is composed of pixels [31].
(c) The brightness of each pixel point is associated with the fluctuation of intensity of the

photons [31].
(d) Each pixel is associated with a coordinate.
In the light of the authoritative view of Kolobov [31], the brightness of each pixel of a quantum

image is determined by the intensity of photons. Meanwhile, pixel defined by Kolobov [31] is the
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integration of photon number within a certain time period at this pixel point. However, to operate
on all photons in one pixel point individually and simultaneously is difficult in reality.

Considering to store the pixel information in the phases, and controlling the brightness of each
pixel point through modulating the phases of the state of quantum image, we can realise effectively
control to the pixels of the quantum image. Assume that the phases θi ∈ (0, π) are from the phase
space θ, and let ηi be from the photon number space η representing the number of photons ( i
labels the different colors of the quantum image, so the maximal i is the color type defined in the
quantum image). Defining a mapping f from the variables θi to ηi

f : θi → ηi. (1)

Obviously, corresponding to θi, ηi also represents the brightness of the pixel point. For θi, motivated
by the Facts (b) and (c) and Eq. 1, as long as we know the phase, the number of photons in one pixel
point is also determined. In addition, it is necessary to assume that the function f is monotonically
increasing.

Now, we introduce the following state |I(θ)〉 [30] as the state representation of a quantum image:

|I({θj})〉 =
1

2n

22n−1
∑

j=0

(|0〉+ eiθj |1〉)
⊗

|j〉, (2)

where {θj} = (θ0, θ2, ..., θ22n−1), θj ∈ (0, π/2), j = 0, 1, ..., 22n − 1. The relative phase information
θj in |0〉+ eiθj |1〉 encodes the grey level. |j〉, j ∈ {0, 1, ..., 22n− 1}, is a 22n dimensional basis state,
and |j〉 represents the coordinate of jth pixel point in the pixel matrix of a quantum image. The
feature of state of quantum images in Eq. (2) indicates that, the synthesis of quantum image can be
implemented only through phase rotation. Therefore, to extract phases from the state of quantum
images is the first and necessary step.

3 Synthesis of quantum images

Given two quantum images, say a carrier and embedder (a image to be embedded). The synthesis
will lead to the pixel accumulation of the carrier and the embedder, and give rise to the brightness
changed in the overlapped positions correspondingly.

Since the pixels of the quantum image are represented with phases, so we should obtain all
phases of the quantum image before starting to synthesize two quantum images. In our paper,
MPE (for details, see also [41, 42]) is considered to be an effective method to obtain phases for the
given state of quantum images. Fig. 1 shows the procedure of synthesizing two images. There are
three steps needed in total (Appendix A.2 lists different cases of phase overflow. This is why we
correct the rotation operator in algorithm 1). The synthesis algorithm of quantum images can be
described with algorithm 1, where |I({θj})〉 and |I({ϕj})〉 are the states of quantum images defined
as Eq. (2).

We have the following instructions:
Step 1 completes phases extraction. Actually, we should cope with many same quantum states

|I({θj})〉 and |I({ϕj})〉, then we could obtain these phases from two different states.
Step 2 constructs rotation operator which is embedded the internal error correction mechanism.
Step 3 completes the synthesis of the state of quantum images. The state |I({ϕj})〉 used in this

step is also same as the backup in the first step.
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Figure 1: Scheme of synthesis of two quantum images using phase rotation. There are three steps
in the algorithm. That is, multiple phase extraction, construction of rotation operator, and image
synthesis. Especially, rotation operator construction should be corrected by embedding the overflow
control mechanism.

Algorithm 1: Synthesis(|I({θj})〉, |I({ϕj})〉)
Input: Two states of quantum images to be synthesized: |I({θj})〉, |I({ϕj})〉 .
Output: The state of synthesized quantum image .

1 Extracting phases from two states |I({θj})〉, |I({ϕj})〉 with MPE;
2 Rotation operator U ′ constructed and corrected;
3 Applying U ′ on the state |I({ϕj})〉 ;

3.1 Phase extraction

Appendix A.1 (see also [34]) indicates that the quantum state with phases to be extracted must be
the following form (that is, Eq. (65))

|I({φj})〉 =
1√
d
(|0〉+ eiφ1 |1〉+ ...+ eiφd−1 |d− 1〉), (3)

which is not equivalent to the form of the state representation of quantum images as Eq. (2)
intuitively. In order to obtain the phases of the state of the quantum image, we should transform
the representation of the quantum image from the form as Eq. (2) to a similar form as Eq. (3).

To this end, note that Eq. (2) could be expressed as the following form,

|I({θj})〉 =
1

2n

22n−1
∑

j=0

|0〉|j〉+ 1

2n

22n−1
∑

j=0

eiθj |1〉|j〉. (4)

Let the states associated with phases in Eq. (4) be a set A, then

A = {|1〉|0〉, |1〉|1〉, |1〉|2〉, ..., |1〉|22n − 1〉}, (5)

where the left qubit |1〉 in A is a computational basis. Given another set B,

B = {|1〉, |2〉, |3〉, ..., |22n〉}, (6)

where |1〉 in B is not the computational basis. Encoding A to B, we get
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|I({θj})′〉 =
1

2n

22n−1
∑

j=0

|0〉|j〉+ 1

2n

22n−1
∑

j=1

eiθj |j〉, (7)

where, as far as phase estimation concerned, Eq. (7) is consistent with the form as Eq. (3), so
MPE can be applied on Eq. (7) to extract its phases.

3.2 Rotation operator constructed

Common sense indicates that if phase estimation is reduced, then the error of measurement is
reduced also. Naturally, comparing with the phase error introduced by applying MPE on the two
kinds of states of quantum images involved, if we do not estimate the phases of the carrier, namely
using phases estimated from embedder only to construct a rotation operator can reduce the error
in the image synthesis, but the shortcoming of this method is also obvious. Actually, since we do
not know the phase information of carrier, to control the result of the phase addition is impossible.
Therefore the cost of this measure may increase the risk of phase overflow. Appendix A.2 is the
interpretation of such an example.

According to our basic requirements, phase which reaches or exceeds π
2 is an exception. In order

to avoid exception, an unitary transformation Un(θ
′
j , ϕ

′
j), j ∈ {0, 1, ..., 22n − 1}, is constructed and

used to restrain the phases in (0, π2 ), where θ
′
j and ϕ

′
j denote the estimated phases of the embedder

and the carrier, respectively.
In order to guarantee that the synthesized pixels are in (0, π2 ) as much as possible, a monotone

increasing function tanh(x) is required,

tanh(x) =
e2x − 1

e2x + 1
∈ (−1, 1),

π

2
tanh(x) ∈ (−π

2
,
π

2
). (8)

tanh(x) is monotone increasing when tanh(x) ∈ [0, 1]. Numerical simmulation shows that when
x ≥ 3, tanh(x) ≈ 1.

Taking a two dimensional transform U2 as an example (namely, the image just has one pixel
point). Assume that the state of the embedder and carrier are |0〉 + eiθ|1〉 and |0〉 + eiϕ|1〉, re-
spectively. On the other hand, let the phase estimated from the state |0〉 + eiθ|1〉 be θ′, and the
phase estimated from the state |0〉+ eiϕ|1〉 be ϕ′. We define operator U2(θ

′, ϕ′) with the following
transform,

U2(θ
′, ϕ′)(|0〉+ eiϕ|1〉) → |0〉+ ei[

π
2 tanh(g(θ′,ϕ′))+ϕ′]|1〉, (9)

where we define

g(θ′, ϕ′)
.
= θ′ + ϕ′, (10)

then, the synthesized result would be in (0, π2 ) with a high possibility when the error of θ′ and ϕ′

as small as possible. The phase accumulation with Eq. 9 degrading the risk of overflow could be
proved in section 4.3.

In Eq. (9), U2(θ
′, ϕ′) is unitary, this is because

U2(θ
′, ϕ′)eiϕ|1〉 → ei[

π
2 tanh(g(θ′,ϕ′))−ϕ′+ϕ]|1〉, (11)
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and

U2(θ
′, ϕ′)|0〉 = |0〉. (12)

That is,

U2(θ
′, ϕ′)|1〉 → ei[

π
2 tanh(g(θ′,ϕ′))−ϕ′]|1〉, (13)

we have

U2(θ
′, ϕ′)|1〉〈1| → ei[

π
2 tanh(g(θ′,ϕ′))−ϕ′]|1〉〈1|. (14)

On the other way, since U(θ′, ϕ′)|0〉 → |0〉,

U2(θ
′, ϕ′) = ei[

π
2 tanh(g(θ′,ϕ′))−ϕ′]|1〉〈1|+ |0〉〈0|. (15)

Thus we have

U2(θ
′, ϕ′)U2(θ

′, ϕ′)† = I. (16)

Therefore, U2(θ
′, ϕ′) is unitary.

The approach above means that we should get the phases of the embedder and the carrier before
constructing this operator. Once the phases of two different images could be estimated with higher
precision, the overflow control would be better ( the limit is 0 error, thus ϕj −ϕ′

j = 0 in Eq. (11)).
Actually, owing to the Heisenberg limit, the error in phase estimation always exists, so ϕj −ϕ′

j = 0
is impossible. About the effectiveness of overflow control, see section 4.3. For two dimensional case,
the element of rotation matrix U2(θ

′, ϕ′) should be

U2(θ
′, ϕ′) =

(

1 0

0 ei[
π
2 tanh(θ′+ϕ′)−ϕ′]

)

, (17)

Eq. (17) shows that it exists an unitary operator which can be used to restrain the phase
overflow. We, now extend the dimension of U2(θ

′, ϕ′) from 2-dimension to 22n+1-dimension to get
U ′, which can be used to transform the state of the quantum image as Eq. (2) to get a feasible
goal state. Constructing the operator U ′ should estimate and get all the phases of the embedder
and carrier. Suppose that the estimated phases of two kinds of images ( that is, the carrier and
the embedder ), to be synthesized are {ϕ′

1, ϕ
′
2, ..., ϕ

′
22n} and {θ′1, θ′2..., θ′22n}, respectively. Then, the

operator which could be employed to transform 22n dimensional image as Eq. (2) is as the following
form.

U ′ =





































11 0 0 0 · · · 0 0 0 0 0 0 0
0 12 0 0 · · · 0 0 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
0 0 0 0 · · · 122n 0 0 0 0 0 0
0 0 0 0 · · · 0 exp1 0 0 0 0 0
0 0 0 0 · · · 0 0 exp2 0 0 0 0
0 0 0 0 · · · 0 0 0 exp3 0 0 0
0 0 0 0 · · · 0 0 0 0 exp4 0 0
...

...
...

...
...

...
...

... · · · · · · . . . · · ·
0 0 0 0 · · · 0 0 0 0 0 0 exp22n ,





































(18)
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where

exp1 = ei[
π
2 tanh(θ′1+ϕ

′

1)−ϕ
′

1] (19)

exp2 = ei[
π
2 tanh(θ′2+ϕ

′

2)−ϕ
′

2] (20)

...

exp22n = ei[
π
2 tanh(θ′

22n
+ϕ′

22n
)−ϕ′

22n
] (21)

3.3 State of the synthesized image

Applied U ′ on the state as Eq. (2), the state of the synthesized quantum image should be

|res〉 = 1

2n

22n−1
∑

j=0

(|0〉+ ei[
π
2 tanh(θj+ϕj)+δj ]|1〉)

⊗

|j〉. (22)

where δj = ϕj − ϕ′
j is an error item. ϕj is the original true phase at position j. δj is the difference

between the true phase and the estimated phase of the carrier image.
Open problem One of the critical step in algorithm 1 is estimation of phases of two states of

quantum images. So MPE is introduced, and the error of the estimated values could not be avoided.
This means that some errors in the synthesized result is inevitable. That’s to say, the synthesis of
quantum image could be distorted to some extent. Theoretically, this problem could be resolved
via increasing the number operator to restrain the error (see section 4.3), after all, the error could
not be eliminated.

4 Analysis of synthesis operation

4.1 Computation complexity of the preparation of quantum images

Since the measurement will lead to state collapse, to complete the phase estimation for each kind of
image with pixels 2n× 2n, O(22n) particles [34] which take the same phase information are needed.
The state preparation of quantum images as Eq. (23) has already been discussed in [8],

|ψ({βj})〉 =
1

2n

22n−1
∑

j=0

(cosβj |0〉+ sinβj |1〉)
⊗

|j〉, (23)

where cosβj |0〉 + sinβj |1〉 ( where βj ∈ [0, π2 ], (j ∈ [0, 22n − 1])) encodes the pixel information at
jth position. The process of the state preparation shows the following theorem 1.

Theorem 1 [ Yan, Iliyasu and Jiang, [8]]Given an angle vector θ = (θ0, θ1, ..., θ22n−1), there is
an unitary transform P that can be implemented by a quantum circuit with polynomial number of
Hadamard gates to transform the input state |0〉2n+1 to a FRQI state Eq. (23).

Note, the proof of the theorem 1 confers Appendix A.3, or see also [8]. To describe the state of a
quantum image, even the essence of representing the quantum image are the same, but the form
of Eq. (2) [32] (representing pixels with angles) is different from Eq. (23) (representing pixels with
phases).
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Theorem 2 [Song and Niu, [32]] Given a quantum image |I({θj})〉 =
1
2n

∑22n−1
j=0 (|0〉 + eiθj |1〉)

⊗

|j〉, there is a 2n + 1 qubits unitary transform C that transforms a

quantum image |I(θ)〉 to the quantum image |I({ψj})〉 = 1
2n

∑22n−1
j=0 (|0〉+ eiψj |1〉)

⊗

|j〉.

Note, the proof of theorem 2 is similar to the proof of theorem 1, so we omit its proof. In theorem
2 ( see also [32]), Song et al. claim that polynomial qubits are needed when we decompose the
relation between |I(θ)〉 and |I(ψ)〉. Comparing with the proof procedure between theorem 1 and 2,
we give a complete procedure of preparing the state of quantum image from the state |0〉

⊗
2n+1 in

the following theorem 3.

Theorem 3 For any initial input state |0〉2n+1, there exists an unitary operator P to transform

the initial input state to the state |I({θj})〉 = 1
2n

∑22n−1
j=0 (|0〉+ eiθj |1〉)⊗ |j〉, and only a polynomial

number of Hadamard gates are needed to complete this transformation.

Proof. This theorem can be proven with the same way as theorem 1 and theorem 2. In
order to obtain the goal state I(θj)〉, we assume that the initial state of the system is |0〉

⊗
2n+1 =

|0〉⊗ |0〉
⊗

2n. This task can be realized in the following two steps.
Step 1. Applying Hadamard gate to the initial state, we then get

|ψ〉 = (H
⊗

H
⊗

2n)(|0〉⊗ |0〉
⊗

2n)

= 1
2n+1 (|0〉+ |1〉)⊗∑22n−1

j=0 |j〉. (24)

Step 2. Constructing and applying a rotation operator Rz(θk),

Rz(θk) =

(

1 0
0 eiθk

)

, (25)

to rotate the phase at the kth pixel location of the quantum image, we get the following operator
Rk.

Rk = (I
⊗

22n−1
∑

j=0,j 6=k

|j〉〈j|) +Rz(θk)
⊗

|k〉〈k|. (26)

Notice that RkR
†
k = I and therefore Rk is an unitary operator. Applying Rk on |ψ〉, we get

Rk
1

2(n+1) [(|0〉+ |1〉)⊗∑22n−1
j=0 |j〉] (27)

= 1
2(n+1) [(I

⊗∑22n−1
j=0,j 6=k |j〉) + (|0〉+ eiθj |1〉)⊗ |j〉]. (28)

Assume that we have an operator Rp, which is similar to Rk. Rp is applied to the result of last
step, we have

RpRk
1

2(n+1) [(|0〉+ |1〉)⊗∑22n−1
j=0 |j〉] (29)

= 1
2(n+1) [(I

⊗∑22n−1
j=0,j 6=k,p |j〉) + (|0〉+ eiθj |1〉)⊗ |j〉

+(|0〉+ eiθp |1〉)⊗ |p〉. (30)
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It is obvious that we can design our goal state |I({θj})〉 using the above operators repeatedly.
That’s to say, the operator P could be constructed as,

P = (

22n
∏

i=1

Ri). (31)

Since all Ri are unitary,
∏22n

i=1Ri is also unitary , and P =
∏22n

i=1Ri is unitary. By induction of Eq.
(27) and Eq. (29), we have

|I({θj})〉 = P |ψ〉. (32)

The number of Hadamard gates used in the process of preparing the state of the quantum image
as Eq. (2) is O(n). In summary, the claim holds.

4.2 Uncertainty relation of the synthesized pixel

Since covariance measurement is used to estimate the multiple phases of the state of quantum image
(see also, [34]), Heisenberg limit is the reason of inevitable phase error. In this part, we explore the
uncertainty relations of a single pixel of the synthesized image.

Actually, Holevo’s theoretical analysis [33] shows that covariant measurement has an uncertainty
relation between the number operator and phases. Consider the complex random variable eiϕ taking
values on the unit circle (−π, π). The variance then is

D{eiϕ} =

∫ π

−π

|eiϕ − E{eiϕ}|2P (dϕ) (33)

where E{eiϕ} =
∫

eiϕP (dϕ). Then the value of the uncertainty of ϕ is formulated as

∆{ϕ}2 =
D{eiϕ}
|E{eiϕ}|2 . (34)

Let H be an infinite dimensional Hilbert space and {|n〉;n = 0, 1, ..., } is a basis, and let N be
the number operator,

N =
∞
∑

n=0

n|n〉〈n|. (35)

∆N = ||(N − N̄)|ϕ〉||2, N̄ = 〈ϕ|N |ϕ〉 (36)

(Generally, constant is also an operator, if we multiply it with an identity operator). Then we have
the following lemma.

Lemma 1 [Holevo, [33]]For any covariant measurement M

∆M{ϕ}2 ≥ (1− 1

2
|〈ϕ|0〉|2)−1(

1

4(∆N)2
+

1

2
|〈ϕ|0〉|2), (37)

the following uncertainty relation holds

∆M{ϕ} ·∆N ≥ 1

2
. (38)
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where ∆M{ϕ} is same as the variance of Eq. (34), and |ϕ〉 = ∑

n ϕn|n〉.
The detailed procedure of proving lemma 1 confers Appendix A.4 (see also [33]). The uncertainty

relation inequality (38) obviously holds, because (1 − 1
2 |〈ϕ|0〉|2)−1 > 1, meanwhile 1

2 |〈ϕ|0〉|2 > 0.
Inequality (38) is a general inequality relation about two objects ∆M{ϕ} and ∆N .

Since the phase obtained from the state of the quantum image complies with the uncertainty
relation as inequality (38), the pixel of the synthesized image has some implied uncertainty relations.
Note that, the embedder ( whose true phase is represented with θj) is embedded into the carrier(
whose true phase is represented with ϕj).

So for the pixel of the synthesised image, we have a general uncertainty relation described as
theorem 4.

Theorem 4 For synthesis operation of quantum images, given two quantum images |I({ϕj})〉 (car-
rier) and |I({θj})〉 (embedder), which are represented as the form as Eq. (2). ϕj and θj are the
phases of the state of two images |I({ϕj})〉 and |I({θj})〉 at jth position, respectively. Suppose
that the number operator is N =

∑∞
n=0 n|n〉〈n|, and {|n〉, n = 0, 1, ...} is a basis of Hilbert space.

Measured |I({ϕj})〉 and |I({θj})〉 to get the estimated phases ϕ′
j and θ′j corresponding to their true

phase ϕj and θj individually and respectively, then the lower bound of the joint uncertainty of the
pixel of the synthesized image is tanh(1) + 1

2 .

Proof. To prove this result, it only needs to check that the following three conditions are true
simultaneously:

(I) In this paper, the method used to estimate all the phases is the covariance measurement
which is provided by Macchiavello [34]( detailed information sees section Appendix A.1). This is
consistent with the method used in [33].

(II) The quantum state which is used for extracting the phase, is consistent with the state
definition of quantum images. That is, the state representation of quantum image

|I({θj})〉 =
1

2n

22n−1
∑

j=0

(|0〉+ eiθj |1〉)
⊗

|j〉 (39)

can be turned to the form as Eq. (4)

|I({θj})〉 =
1√
22n

(|0〉+ eiθ1 |1〉+ ...++eiθ22n |22n〉) (40)

The two points (I) and (II) guarantee that the phases could be extracted from the quantum state.
Since the jth position of carrier image and the jth position of embedder image are two inde-

pendent physical system, for a synthesized pixel point, to distinguish two different independent
physical systems, we label the number operators used in two independent physical systems for the
phase extraction as N1 and N2. by applying lemma 1, the uncertainty relation for each physical
system could be represented as,

∆M{ϕ} ·∆N1 ≥ 1

2
, ∆M{θ} ·∆N2 ≥ 1

2
, (41)

where ∆N1 and ∆N2 represent the variance of the number operator in the first and second physical
system. Similarly, ∆M{ϕ} and ∆M{θ} are the variance of phases calculated with phases estimated
from two kinds of states of the quantum images.
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(III) Let varj be the general phase formula of the synthesized image. It is known from Eq.
(38) that the pixel of the synthesized image could be represented as

varj =
π

2
tanh(θ′j + ϕ′

j) + δj . (42)

Note that, the first and most important is that, the pixel information of the synthesized image is
taken by an independent physical system. Secondly, there is a linear operation about the estimated
phase ϕ′

j in δj . Thirdly, there is a linear operation about two estimated value ϕ′
j and θ′j . Namely,

ϕ′
j+θj. Fourthly, there is a non-linear operation which is applied on θ′j+ϕ

′
j . Namely, tanh(θ′j+ϕ

′
j).

Especially, to obtain the phases of the state of two different images is independent in the two different
physical systems. Thus we have

∆M{ϕ} ·∆N1 +∆M{θ} ·∆N2 ≥ 1. (43)

Combined with the inequality (41) and inequality (43), the pixel uncertainty of the synthesized
image has the relation

tanh(∆M{ϕ} ·∆N1 +∆M{θ} ·∆N2) + ∆M{ϕ} ·∆N1 ≥ tanh(1) +
1

2
. (44)

So the result holds.
The uncertainty relation reflected by inequality (38) could be summarized by the following

figures. Fig. 2 (a), the boundary conditions of satisfying the minimum uncertainty relation is when
the quantum state of the system is coherent state. Fig. 2 (b) and Fig. 2 (c) describe two uncertainty
relations between P (phase) and N (number operator) where the components of the squeezed state
are compressed. We use Fig. 2(a), Fig. 2(b), Fig. 2(c) to induct the meaning of Fig. 2 (d), where
if the number operator N is sufficient large (or enough large), the phase will be exactly estimated.

Before interpreting the meaning of the uncertainty relation in inequality (44), we emphasis
that the inequality (44) describes an uncertainty relation of a pixel of a new independent physical
system. This is because the final phase of the state of the synthesized image ( see Eq. (42))
is generated by applying the unitary operator U ′ (see Eq. (18)) on the state of quantum image
(note, this quantum image state is a particle with phases information, see Eq. (2)). Based on this
view, we simultaneously know that, Eq. (44) reflects a joint uncertainty of a new physical system.
∆M{ϕ}·∆N1 ≥ 1

2 and ∆M{θ}·∆N2 ≥ 1
2 are two independent physical systems, and the uncertainty

relations could be described with table 1 and table 2 (for number operator, ↑ means that the number
operator becomes larger, for precision of phase, the sign ↓ means that the precision of the phase
estimation decreases, and so on), respectively. Finally, ∆M{ϕ} ·∆N1 ≥ 1

2 and ∆M{θ} ·∆N2 ≥ 1
2

induce the joint uncertainty relation between θ′j , ϕ
′
j and N1, N2 with inequality (44) (see table 3).

4.3 Effectiveness analysis of overflow control

The core of algorithm 1 is to control the phase overflow, so the effectiveness of algorithm 1 is
decided by the effectiveness of phase overflow control. Once getting the phases which are estimated
from some quantum states, we then can analyse these phases with classical methods, because these
values are classical information. On the other hand, note that the phases required in Eq. (2) are
in (0, π2 ), and the error of phase estimation always exists (see inequality (38)), so the measurement
results exceed π

2 is possible. For the sake of consistency and rationality, we should guarantee that
all these phases exceeding π

2 remain in a legal range.
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Table 1: Uncertainty relation in single physical system for extracting a phase from carrier image
(∆M{ϕ} ·∆N1 ≥ 1

2 )

the trend of N phase precision

N1 ↑ ϕj ↑
N1 ↓ ϕj ↓

Table 2: Uncertainty relation in single physical system for extracting a phase from embedder image
(∆M{θ} ·∆N2 ≥ 1

2 )

the trend of N phase precision

N2 ↑ θj ↑
N2 ↓ θj ↓

Table 3: The joint uncertainty relation of the synthesized pixel of the synthesized image. The joint
uncertainty relation between N1, N2 and θ′j +ϕ′

j (tanh(∆M{ϕ} ·∆N1 +∆M{θ} ·∆N2) +∆M{ϕ} ·
∆N1 ≥ tanh(1) + 1

2 )

the trend of N1 trend of N2 precision of joint phase

N1 ↑ N2 ↑ (θj + ϕj) ↑
N1 ↓ N2 ↑ (θj + ϕj) uncertain

N1 ↑ N2 ↓ (θj + ϕj) uncertain

N1 ↓ N2 ↓ (θj + ϕj) ↓

(a) (b) (c) (d)

Figure 2: (a) Coherent state satisfies the equivalence of the lower bound. (b) and (c) describe two
uncertainty relations where the orthogonal components of the squeezed state are compressed. (d)
The uncertainty with larger particles number (represented by N) than (c).
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Restictions 1 Assume that ϕ′
j is the phase got by applying MPE on the state of quantum

image at the jth position. Thus we have the following restrictions:
{

ϕ′
j = ϕ′

j mod
π
2 , if ϕ

′
j >

π
2

ϕ′
j = ϕ′

j , if 0 < ϕ′
j <

π
2 .

(45)

That is, ϕ′
j ∈ (0, π2 ) is a mandatory requirement. let the estimated phases ϕ′

j do operation (ϕ′
j

mod π
2 ), and the results also are labelled with ϕ′

j .
Restictions 2 If the phases in the quantum state of the synthesized image exceed π

2 , then these
phases are called exception phases.

From Eq. (22), we know that the general phase expression in the state of the synthesized image
is

π

2
tanh(θ′j + ϕ′

j) + δj . (46)

According to the restrictions 2, if Eq. (46) exceeds π
2 , then the jth pixel is an exception pixel.

Definition 1 Let ψin be the length of the phase space to be compressed, and ψout be the length of
the phase space compressed, then we call the ratio ψout

ψin
the compression ratio (of overflow control).

From the common sense, if such a ratio ψout

ψin
< 1, then the strategy is effective. If ψout

ψin
= 1, then

the strategy is ineffective.

4.3.1 Compression ratio and effectiveness of the algorithm

By compressing phase information to control the phase in the specified range (0, π2 ), the advantage
of our control strategy is reflected by a compression ratio. About the effectiveness of the overflow
control, we have the following result.

Theorem 5 Assume that θ′j and ϕ
′
j are the j

th estimated phase corresponding to their true phase θj
and ϕj of two different images, (j ∈ {1, 2, ..., 22n}), respectively. Let δj = ϕj−ϕ′

j, when the number
operator N1 and N2 used in two physical systems are enough large, the limit of the compression
ratio of phase is 1

2 .

Proof. According to the known conditions, such a ratio could be expressed

π
2 tanh(θ′j + ϕ′

j) + δj

θ′j + ϕ′
j

. (47)

When N1 and N2 are enough large, then δj is an infinitesimal. The Eq. 47 approximates

π
2 tanh(θ′j + ϕ′

j)

θ′j + ϕ′
j

. (48)

Since

θ′j + ϕ′
j ∈ (0, π),

π

2
tanh(θ′j + ϕ′

j) ∈ (0,
π

2
), (49)

that’s to say, the interval (0, π) is compressed into (0, π2 ). Thus the compression ratio is
π
2

π
= 1

2 . So
the result holds.
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Note that tanh(x) is a canonical function about x, and the feature of tanh(x) implies that,
the compression ratio in interval (0, 3) is greater than ratio in the interval (3, π). Therefore, the
compression ratio is non-uniform when x of tanh(x) changes in the interval (0, π).

Corollary 1 Assume that N1 is a general number operator used for phase extraction of the carrier
image, then the compression ratio is in the range [0, 12 ).

Proof. When N1 is a general number, it includes two cases. Firstly, when N1 is sufficient large,
δj ≈ 0 with high probability. From theorem 5, we can conclude that the upper bound of the
compression ratio approximates 1

2 . Secondly, it is known from the inequality ∆M{ϕ′
j} ·∆N1 ≥ 1

2 ,
when N1 is not sufficient large, we know δj 6= 0 with high probability. Since

ϕj ∈ (0,
π

2
), ϕ′

j ∈ (0,
π

2
), (50)

(note, ϕj is a true phase of the image at position j) then

δj = ϕj − ϕ′
j ∈ (−π

2
,
π

2
). (51)

Further, since θ′j > 0 and ϕ′
j > 0, we have

π >
π

2
tanh(θ′j + ϕ′

j) + δj > −π
2
. (52)

We do not consider the exception case of overflow. Then according to the definition of the compres-
sion ratio, inequality (52) includes the lower bound of the synthesized pixel (or phase information).
That is, if

θ′j + ϕ′
j =

π

2
tanh(θ′j + ϕ′

j) + δj , (53)

namely, when

δj = θ′j + ϕ′
j −

π

2
tanh(θ′j + ϕ′

j), (54)

then, according to the definition 1, ψout = θ′j + ϕ′
j − (π2 tanh(θ′j + ϕ′

j) + δj) = 0. So, 0 compression
ratio happens. Because the phases estimated satisfy the uncertainty relations, so such case is
possible. Therefore, the compression ratio is in the range [0, 12 ). In a word, the result holds.

Corollary 2 Achieving the maximal compression ratio is a sufficient but not a necessary conditions
for π

2 tanh(θ′j + ϕ′
j) + δj <

π
2 .

Proof. Assume that the number operator used to estimate the jth phases of two physical systems
are N1 and N2. On the one hand, according to the theorem 5 and corollary 1, the maximal
compression ratio means that, N1 and N2 are sufficient large, namely, δj ≈ 0. Then, the phase of
the state of the synthesized image at jth position approximates π

2 tanh(θ′j + ϕ′
j), (j could be any

one of 0, 1, 2, ..., 22n − 1). Obviously, no matter what θ′j + ϕ′
j ∈ (0, π) is, the synthesized result

of the phase could not overflow. On the other hand, whether the result of the synthesized phase
overflow or not is determined by π

2 tanh(θ′j + ϕ′
j) and δj simultaneously. It is apparent that the

condition which satisfies π
2 tanh(θ′j + ϕ′

j) + δj <
π
2 if θ′j + ϕ′

j and δj are not too large, such as,
when θ′j + ϕ′

j =
π
10 , and δj =

π
10 . That’s to say, π2 tanh(θ′j + ϕ′

j) + δj <
π
2 does not mean that the

compression ratio achieves the maximal compression ratio. So, the result holds.
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4.3.2 Overflow risk and restraint mechanism

In this section, θ′j and ϕ′
j are assumed to be the jth estimated phase corresponding to the true

phase θj and ϕj of two different images, (j ∈ {1, 2, ..., 22n}), respectively. Intuitively, since

δj = ϕj − ϕ′
j , θj , ϕj ∈ (0,

π

2
), θ′j , ϕ

′
j ∈ {0, π

2
}, (55)

the mathematic relation inequality (52) holds. Especially, we note that (−π
2 , 0) and [π2 , π) are the

two phase overflow intervals for the state of the synthesized quantum image. Indeed, it seems to
be unfortunate. However, through analyzing some numerical relations, we will known that, though
these overflow cases are possible to happen, the actual fact is not so bad.

Actually, the risks are degraded when the two parts π
2 tanh(θ′j + ϕ′

j) and δj are combined. On
the one side, owing to tanh(3) ≈ 1, thus when

x ∈ (0, 3), x+∆x ∈ (0, 3), and x−∆x ∈ (0, 3), (56)

the steep function curve of tanh(x) means that a little deviation ∆x will lead to a larger difference.
That is,

π

2
tanh(x+∆x) ≫ π

2
tanh(x). (57)

Similarly, we have

π

2
tanh(x−∆x) ≪ π

2
tanh(x). (58)

On the other side, δj > 0 implies that ϕ′
j is less than ϕj , so

π

2
tanh(θ′j + ϕj) >

π

2
tanh(θ′j + ϕ′

j). (59)

Namely, π2 tanh(θ′j + ϕ′
j) decreases, and if θ′j + ϕ′

j ∈ (0, 3), π2 tanh(θ′j + ϕ′
j) reduces more. Corre-

spondingly, δj < 0 means that ϕ′
j is larger than ϕj , so

π

2
tanh(θ′j + ϕj) <

π

2
tanh(θ′j + ϕ′

j). (60)

Obviously, π2 tanh(θ′j + ϕ′
j) increases, and if θ′j + ϕ′

j ∈ (0, 3), π2 tanh(θ′j + ϕ′
j) increases more. Thus

the analysis could be summarized as follows. If δj > 0, then π
2 tanh(θ′j + ϕ′

j) becomes smaller, δj
becomes larger. If δj < 0, then π

2 tanh(θ′j +ϕ′
j) becomes larger, δj becomes smaller. So there exists

a compromise relation between π
2 tanh(θ′j + ϕ′

j) and δj . However, the degree of compromise could
not be measured strictly with numerical relation, because all these relations remain the extension
of the uncertainty relation (see inequality (38)). In brief, the phase overflow mechanism proposed
in this paper degrades the possibility of happening phase overflow. So to some extent, algorithm 1
effectively restrains the possibility of the phase overflow.

4.3.3 Effectiveness and uncertainty of the synthesized pixel

Theorem 5 shows that the maximal compression ratio exists and equals 1
2 . Corollary 1 points out

that the range of the compression ratio is in the range [0, 12 ). Corollary 2 discusses the properties
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of the maximal compression ratio. These three results indicates that the phase overflow control
in algorithm 1 is effective on the whole. Theorem 5 also indirectly indicates that the operator
constructed as Eq. 18 to implement the phase rotation is rational.

The compression ratio is associated with the precision of the phase estimation. Taken two
corresponding pixels to be synthesized as an example, Assume that the number operators used to
extract the phases of two corresponding physical system are N1 and N2, if N1 and N2 becomes
larger, then it indicates the higher precision of the phase estimation, the less δj , and the larger
compression ratio with higher probability. So the compression ratio is determined by N1 and N2.
Owing to the uncertainty relation ∆M{ϕ′

j} · ∆{N1} ≥ 1
2 , and according to the theorem 5 and

corollary 1, except for the exception case of phase overflow, the compression ratio of the overflow
control in the synthesized image is in the range [0, 12 ), but uncertain. Because the phase obtained
is larger or smaller than its true phase is a probability issue, not a deterministic issue. So it is
impossible to determine whether the specified pixel overflow or not. However, for quantum image
synthesis, if only the number operators used in the covariance measurement are sufficient large, we
then could judge that the effectiveness of the synthesized pixels of the quantum image could be
good.

5 Quantum versus classical image processing

In our quantum images synthesizing procedure, a quantum image with 22n phases as the input
is taken, where n is the number of pixels on vertical and horizontal coordinates, respectively. By
applying MPE, 22n phases are obtained. We compare the classical and quantum image processing
from the following aspects. (1) Image edition is a general task in the classical image processing.
The synthesis procedure of quantum image in this paper shows that quantum images can also
be edited. This paper illustrates what aspects should be considered if we want to implement the
quantum image synthesis successfully. (2) Compared with classical image processing, quantum
image processing relies on the quantum and classical methods simultaneously. (3) Since to process
a large size image in a classical computer is very difficult, so modern image processing on the
classical computers always depends on the deep learning network. Otherwise, it is hardly to deal
with it effectively. However, this task could be implemented on a quantum computer with matrix
computation. (4) The greatest advantage in quantum image processing is that much less of memory
is needed for storing a quantum image. For a quantum image represented with a matrix of the size

2n × 2n, 2n+ 1 = log
(22n)
2 +1 qubits is enough to store phase (pixel) matrix. This means that the

storage space needed for storing the pixel information of a quantum image is drastically reduced.
(5) However, the auxiliary space remains O(22n) needed to ensure the phase precision when we
estimate phases with MPE.

6 Conclusions

This paper raises how to implement synthesis of quantum images, and a method is brought forward
to resolve this problem. Since the pixel is represented with phase,to obtain the phases of the
quantum image to be synthesized is the first step of implementing the synthesis of quantum images.
Thus MPE is applied to obtain the multiple phases of the quantum images. However, since the
error could be introduced by MPE and phase addition operation could lead to the phase overflow, a
rotation operator which is embedded the overflow control mechanism is constructed. Applying this
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rotation operator on the state of carrier, we could get the goal state of the synthesized quantum
image. Then, we compute the joint uncertainty relation of the pixel of the synthesized image. Based
on this calculating result, the discussion about compression ratio shows that the overflow control
mechanism proposed in this paper to reduce the possibility of overflow is effective. In this paper,
we try to give a quantum image processing method for synthesizing two quantum images, so some
defects might be in it, such as the complexity. Therefore, better algorithms are expected to improve
the performance of the quantum image synthesis further in the future.
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A Supplementary materials

A.1 Multiple phase estimation

Parallelism is an important attributes of quantum information processing and due to that we
can also expect that quantum information processing of phases can be done simultaneously and
efficiently. There are, naturally, quite a few ways to deal with this problem. Humphreys et al.
[35] proposed one method to implement the MPE via finding simultaneously estimates of D phases
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of the state |ψθ〉 =
∑D
k=1 αke

iNk·θ|Nk〉, where Nk is a number operator and D is a configuration
number. However, this approach can not be used here because our form of the state of the quantum
image is not consistent with the state considered in [35]. On the other side, the method proposed
in [34] can handle this problem. We will summarize the main idea of Macchiavello’s[34] in the
following.

We consider the estimation theory of M independent phases φj (j = 1, ...,M) through the
unitary transformation

ρ{φj} = exp(−i
M
∑

j=1

φjĤj)ρ0exp(i

M
∑

j=1

φjĤj) (61)

where Ĥj represent M commuting self-adjoin operators which are defined on the Hilbert space H
of the considered quantum system. The vectors {|nj〉} denote now eigenvectors corresponding to

the eigenvalues nj of the operator Ĥj .
According to the general framework of quantum estimation theory, a cost function C̄ of C(φ̄j , φj)

is defined as

C̄ =

∫ 2π

0

dφ1...

∫ 2π

0

dφMp0({φj})
∫ 2φ

0

dφ̄1 ...

∫ 2π

0

C(φ̄j , φj)p(φ̄j |φj), (62)

and depends on the set of the M estimated values ¯{φj} corresponding to the M actual values {φj}.
The estimation problem is reduced to the problem of minimizing the average cost C̄ by optimizing
POVM dµ(φ̄j). In the view of the basic laws of quantum mechanics, the relation

∫

dµ(φ̄j) = I has
to be satisfied. Since there is no contribution to the average cost, dµ⊥(φj) is out of considerations.
For the detailed definition see [34]. p0(φj) and p(φ̄j |φj) are prior probability densities for real values
φj and the conditional probability of estimating the set of values φ̄j given to real values of φj .

When a general class of cost functions is considered, then by Holevo’s outcomes, the optimal
POVM takes the form

dµ||(φj) =
dφ1
2π

...
dφM
2π

|e(φj)〉〈e(φj)|, (63)

where |e(φj)〉 is defined as

|e(φj)〉 =
∑

nj

exp(i
∑

j

njφj)|{nj}〉. (64)

In such a case, the multiple phases of the state

|I(φj)〉 =
1√
d
(|0〉+ eiφ1 |1〉+ ...++eiφd−1 |d− 1〉) (65)

can be estimated with the general POVM

|e(φj)〉 =
∑

nj

exp(i

d−1
∑

j=1

njφj)|n0, n1, ..., nd−1〉s (66)

20



with the fidelity

F (φj) = |〈ψ0|ψ(φj)〉|2 =
1

d2
[d+ 2

d−1
∑

j=1

cosφj (67)

+2
∑

j>k

cos(φj − φk)], (68)

where

|ψ0〉 =
1

dN

∑

nj

√

N !

n0!n1!...nd−1!
|n0, n1, ..., nd−1〉s (69)

and where N is the number of states |e(φj)〉 that need to be prepared.

A.2 Shortcoming of constructing operator by using embedder’s phases

This section gives another method to construct a phase rotation transform. The main goal is to
compare with Eq. (18) and Eq. (70), and then we can explore the advantage or disadvantage for
the different transforms. Let the phase extracted from Eq. (7) be (θ′1, θ

′
2, ..., θ

′
22n). Thus using

(θ′1, θ
′
2, ..., θ

′
22n) to construct a rotation operator U , we have

U =







































11 0 0 0 · · · 0 0 0 0 0 0 0
0 12 0 0 · · · 0 0 0 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
0 0 0 0 · · · 122n 0 0 0 0 0 0

0 0 0 0 · · · 0 eiθ
′

1 0 0 0 0 0

0 0 0 0 · · · 0 0 eiθ
′

2 0 0 0 0

0 0 0 0 · · · 0 0 0 eiθ
′

3 0 0 0

0 0 0 0 · · · 0 0 0 0 eiθ
′

4 0 0
...

...
...

...
...

...
...

... · · · · · · . . . · · ·
0 0 0 0 · · · 0 0 0 0 0 0 eiθ

′

22n ,







































(70)

where 11, 12, ..., 122n are 1. The index in each 1 denotes how many 1 used on the diagonal line (there
are 22n 1 in total ). Apparently, UU † = I, so U is unitary.

Applying U on |I(ϕj)〉, we get the phase accumulation result |res〉 = U |I(θj)〉,

|res〉 = 1

2n

22n−1
∑

j=0

|0〉|j〉+ 1

2n

22n−1
∑

j=0

ei(θ
′

j+ϕj)|1〉|j〉. (71)

That is,

|res〉 = 1

2n

22n−1
∑

j=0

(|0〉+ ei(θ
′

j+ϕj)|1〉)
⊗

|j〉. (72)
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The analysis below will show that some problems exist if we directly apply U on the state of
quantum images.

According to the state representation of quantum image ( see Eq. (2)), and combing with the
restrictions 1 and restrictions 2 in section 4.3, for Eq. (72), we have

ϕj , θ
′
j ∈ (0,

π

2
), j = {0, 1, ..., 22n − 1}. (73)

However, according to the phase requirement about state representation of quantum images, we
have

ϕj + θ′j ∈ (0,
π

2
), j = {0, 1, ..., 22n − 1}. (74)

That is, the allowable maximal phase is π2 (the upper bound of the phase accumulation is determined
by Eq. (2)). If the phases in Eq. (2) which are not in the range (0, π2 ) are undefined. However,
the addition in Eq. (74) is a common mathematic operation about two real values, and the result
should be

ϕj + θ′j ∈ (0, π), j ∈ {0, 1, ..., 22n − 1}. (75)

The contradiction between Eq. (74) and Eq. (75) indicates that the overflow happens with high
risks. If nothing measures are to be taken, it is probable that the synthesized phases exceed π

2 .
Two points should be emphasised. Firstly, since the phase estimation for the case of 0 phase

(pixel is 0), the outcome will be empty, the synthesis operation above will not affect the case of 0
phases. Secondly, θ′j + ϕj in Eq. (72) may exceed π

2 if nothing measure is to be taken.
Compared with Eq. (18), the advantage of this method is reduce the times of measurement, so

the error of phase is reduced one half. But the disadvantage is also very obvious, that is, there is
nothing we can do to restrain the overflow when the overflow happens. For example, we do not
introduce tanh(x) to Eq. (70), because one half of phases are unknown. This is the reason why we
choose Eq. (18) as the phase rotation transform.

A.3 Proof of Theorem 1

The following procedures of proving theorem 1 is digested from [8]. Two steps implement the
preparation of the quantum state.

Step1. applying transform H = I
⊗

H
⊗

(2n+1), and the result is assumed as |S〉, we have

|S〉 = H|0〉
⊗

|0〉
⊗

2n =
1

2n
|0〉

⊗

2n
∑

j=0

|j〉. (76)

Then, construct the rotation matrices Ry(2θj) (along the Y-axis by the angle 2θj) and controlled
rotation matrices Rj , (j = 0, 1, ..., 22n − 1),

Ry(2θj) =

(

cos θj − sin θj
sin θj cos θj

)

, (77)

Rj = (I
⊗

22n−1
∑

i=0,i6=1

|i〉〈i|) +Ry(2θj)
⊗

|j〉〈j|. (78)
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Since RjR
†
j = I2n+1, Rj is unitary. Applying Rk and RlRk on |S〉 gives rise to the following

result:

Rk(|S〉) = Rk(
1

2n
|0〉

⊗

2n−1
∑

j=0

|i〉)

=
1

2n
[|0〉

⊗

22n−1
∑

i=0,i6=k

|i〉〈i|+ (cos θk|0〉+ sin θk|1〉)
⊗

|k〉], (79)

RlRk|S〉 = 1
2n [|0〉

⊗∑22n−1
i=0,i6=k |i〉〈i|

+(cos θl|0〉+ sin θl|1〉)
⊗ |l〉] + (cos θk|0〉+ sin θk|1〉)

⊗ |k〉]. (80)

Thus we can conclude that R|S〉 = (
∏22n−1
i=0 Ri)|S〉, and this is the final state what we intend

to prepare for. The scale of the resource overhead is described as theorem 1.

A.4 Proof of Lemma 1

This theory evolves from the uncertainty relation between the rotation angle θ and the angular
momentum L of the particles.

In this part, we’ll introduce covariance measurement and uncertainty relation referred. The
complete introduction confers [33].

Let G be a locally compact transitive group of transformations of a parametric set θ, and {Vg} a
continuous unitary ray representation of G in a Hilbert space H. LetM(dθ) be a θ−measurement,
that is a generalised resolution of identity in H on Borel subsets of θ. A measurement M(dθ) is
covariant with respect to {Vg} if

V ⋆g M(B)Vg =M(g−1B), (81)

for any Borel B ⊂ θ. The covariant measurement has the general form as

M(dθ) = eiLθP0e
−iLθ dθ

2π
, (82)

where Po is a positive operator.
The optimal covariant measurement is defined as

〈|M⋆(dθ)|m′〉 = ei(m−m′)θ ϕm · ϕ̄
|ϕm| · |ϕm′ | ·

dθ

2π
(83)

The proof the lemma 1 starts from the uncertainty of angular momentum.
LetM⋆ be a covariant measurement with both Bayes and minimax for any measure of deviation,

then EMe
iθ =

∑1
−l+1

¯ψm−1pm−1,mψm, where M represents the expectation of PM .

Introducing the operators E∓ =
∫ π

−π
e±iθM⋆(dθ), so that

E− = E⋆+, E−E+ = I − |l〉〈l|, E+E− = I − | − l〉〈−l|. (84)
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Further introducing cosine operator C = 1
2 (E+) +E− and sine operator S = i

2 (E+ − E−), and
we have

C2 + S2 = I − 1

2
[|l〉〈l|+ | − l〉〈−l|], [C, S] = i

2
[| − l〉〈−l| − l〉〈l|]. (85)

EM⋆
{eiθ} = 〈ϕ|E−|ϕ〉 ≡ C̄2 + S̄2, (86)

|EM⋆
|2 = C̄2 + S̄2. (87)

Using Eq. 85, we have

DM⋆
{eiθ} = ||(C − C̄)ϕ||2 + ||(S − S̄)ϕ||2 + 1

2
(|ϕ−l|2 + |ϕl|2) (88)

≡ (∆C)2 + (∆S)2 +
1

2
(|ϕ−l|2 + |ϕl|2). (89)

Since [C,L] = −iS and [S,L] = iC, the uncertainty relation satisfies with

(∆C)2 + (∆S)2 ≥ 1

4
S̄2, (∆S)2(∆L)2 ≥ 1

4
C̄2. (90)

By applying Eq. (85), (86), (88), and inequality (90), we obtain

∆M⋆
{θ}2 ≥ 1

4(∆)2
+

1

2
(|ϕ−l|2 + |ϕl|2)|EM⋆

{eiθ}|−2. (91)

Based on Eq. 83, introducing phase operator

P =

∫ π

−π

eiϕM⋆(dϕ), and P
⋆ =

∫ π

−π

e−iϕM⋆(dϕ) (92)

which has the relation

PP ⋆ = I, P ⋆P = I − |0〉〈0|. (93)

With this condition, through analogizing the uncertainty relation about angular momentum, we
can get

∆M{ϕ} ≥ (1− 1

2
|〈φ|0〉|2)−1(

1

4(∆N)2
+

1

2
|〈φ|0〉|2), (94)

the following uncertainty relation holds

∆M{ϕ} ·∆N ≥ 1

2
. (95)
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