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Abstract

Quantum privacy comparison(QPC) plays an important role in secret ballot elections, private auctions and so

on. To date, many multi-party QPC(MQPC) protocols have been proposed to compare the equality of k(k ≥ 3)

participants. However, there are few examples of MQPC used to compare the sizes or values of their privacies.

In this paper, we propose a MQPC protocol by which any k(k ≥ 3) participants can compare the sizes of their

privacies with executing the protocol just once. The proposed MQPC protocol takes the d− level GHZ states as

quantum resources, and a semi-honest TP is introduced to help the participants to determine the relationship

of their privacies. Further more, only single-particle unitary transformations and measurements are involved,

and the participants need not to share common secrets with each other beforehand which makes the proposed

protocol much more efficient. Analysis shows that our protocol is secure against internal and external attack in

theory.

Keywords: Quantum Cryptography; Multi-party Quantum Privacy Comparison(MQPC); Quantum

Fourier Transform(QFT); Third Party(TP); GHZ State.

1. Introduction

Privacy comparison originates from the concept of millionaire problem introduced by Yao which can be

described as follows: two millionaires want to know who is richer without divulging any information about their

wealth, and a novel solution for the problem was proposed by him[1]. Later, many solutions[2, 3] have been

proposed, and the millionaire problem, especially privacy comparison became an important topic in classical

cryptography. In the other hand, with the revolutionary application, known as BB84, of the quantum mechanics

in the cryptography [4], quantum cryptography attracts much more attention from all over the world, and

many kinds of cryptography protocols such as quantum key distribution (QKD)[5, 6], quantum secret sharing

(QSS)[7, 8, 9], quantum direct communication(QDC)[10], quantum key agreement(QKA)[11], and so on, have

been proposed. As an important topic, privacy comparison in the quantum circumstances, i.e., quantum privacy

comparison(QPC), has attracted wide attention from many cryptographers.

In 2009, the first two-party QPC protocol for comparing information of equality based on bell states and a

∗Hao Cao, caohao2000854@163.com.

Preprint submitted to Journal of LATEX Templates February 12, 2019

http://arxiv.org/abs/1902.03595v1


hash function was proposed by Yang and Wen [12]. Thereafter, several two-party QPC protocols[13, 14, 15] based

on entangled quantum resources, such as GHZ states, χ-type states and so on, were proposed. However, only two

parties were involved in the above protocols. Until 2013, the first multi-party QPC(MQPC) was proposed by

Chang et al[16]. Since then, various two-party [17, 18, 19, 20, 21] and multi-party [22, 23, 24, 25] structures were

proposed. However, the aforementioned protocols are only suitable for comparing the equality of information.

When it comes to size comparison, these protocols are powerless.

Fortunately, in 2011, Jia et al presented the first two-party QPC protocol for comparing the sizes of privacies

based on d − level three-particle GHZ states [26], in which the information of sizes was encoded into the phase

of GHZ states. Later, in 2013, three two-party QPC protocols [27, 28, 29] for comparing the information of sizes

based on d − level bell states were proposed. In the same year, Yu et al [30] proposed another one based on

d − level single particles. However, the five QPC protocols mentioned above only relate to comparing the size

of two parties. Until 2014, the first protocol of size comparison in multi-party circumstance[31] was proposed by

Luo et al. However, the participants needed to share a privacy key K beforehand by using QKA protocol which

will waste a lot of quantum resources. Besides, each participant and TP need to establish an authenticated

classical channel beforehand. Later, Huang et al [32] proposed another MQPC protocol based on GHZ states,

which can also be used to compare the sizes of all privacies. However,we found that there exists a serious security

flaw in the protocol after close analysis, i.e., an internal participant can get the privacy of any other participant

without being found.

In this paper, we will propose a novel MQPC protocol by which any k(k ≥ 3) participants can compare the

sizes of their privacies with executing the protocol just once. In this protocol, a semi-honest third party(TP )[31]

is introduced to help the participants to compare the sizes of their information. The semi-honest means that

the TP will always execute the protocol honestly, record the information of the participants and try to extract

their privacies from the records, but he will not conspire with any participant or outside eavesdropper. First,

TP prepares some d − level k − particle GHZ states and distributes them to every participant. Second, each

participant encodes them with unitary operations based on a random sequence, and sends them back to TP .

Next, each participant encrypts his size by the random sequence and sends it to TP . At last, TP measures

the GHZ states on the Z-basis separately, compares them with the encrypted size, and obtains the results of

comparison. The proposed MQPC protocol can ensure that

(1)correctness: all participants can get the size relationship of their privacy correctly with the help of TP if they

execute the protocol honestly.

(2)security: the semi-honest party TP cannot get any information about the privacies of participants except the

size relationship. Besides, each participant cannot deduce privacy of others from the comparison result.

The structure of our paper is as follows. Section 2 devotes to the details and correctness of our proposed proto-

col, and a novel example is presented. Section 3 analyzes the proposed protocol and compares it to the existed

protocols, and a brief conclusion is given in section 4.
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2. Results

Before going further, firstly we recall some definitions and quantum resources which will be used in the

description of our protocol.

2.1. Preparation for the protocol

The quantum resource used in our protocol is the d− level k− particle GHZ state which can be represented

as

|Φ〉 = 1√
d
(|0〉|0〉 · · · |0〉
︸ ︷︷ ︸

k

+ |1〉|1〉 · · · |1〉
︸ ︷︷ ︸

k

+ · · ·+ |d− 1〉|d− 1〉 · · · |d− 1〉
︸ ︷︷ ︸

k

) (1)

For a d− level quantum system, there are two indistinguishable orthogonal bases, Z-basis and X-basis :

Z = {|0〉, |1〉, |2〉, . . . , |d− 1〉}
X = {QFT |0〉, QFT |1〉, QFT |2〉, . . . , QFT |d− 1〉}

(2)

where QFT : |x〉 → 1√
d

d−1∑

z=0

exp(
2πixz

d
)|x〉 is the quantum Fourier transform(QFT). Let us introduce an unitary

operation (we call it shift operator) as follows:

Ur =

d−1∑

t=0

exp(
2πit(t⊕ r)

d
)|t⊕ r〉〈t| (3)

Hereafter, the symbols ⊕ and ⊖ denote modular d addition and subtraction. It is easy to verify that the shift

operator is an one-to-one map from Z-basis to itself and X-basis to itself, i.e.,

Ur(|s〉) = |s⊕ r〉
Ur(QFT |s〉) = QFT |s⊕ r〉(s = 0, 1, 2, . . . , d− 1)

(4)

2.2. The MQPC protocol for comparing the sizes of information

Let TP be a semi-honest party and P0, P1, P2, . . . , Pk−1 be k participants. Each participant Pi (i ∈{0, 1, 2,
. . . , k − 1}) possesses a m − length privacy pi = (pi,1, pi,2, . . . , pi,m) ∈ {0, 1, . . . , l}m (here d = 2l + 1). They

want to compare the size of p0,j , p1,j, . . . , pk−1,j(j = 1, 2, . . . ,m) without revealing any information. Through

executing the following protocol, they could achieve their goals with the help of TP . The detailed description of

our MQPC protocol can be seen as follows:

Step 1 Preparation. TP prepares m identical d − level k − particle GHZ states in the form of equation

( 1 ), and splits them into k particle-sequences: S0, S1, . . . , Sk−1 . The i − th sequence Si(i = 0, 1, . . . , k − 1) is

consisting of the i− th particles of these GHZ states. Next, he will get a series of new sequence S′
0, S

′
1, . . . , S

′
k−1

by inserting m decoy particles which are selected from X-basis or Z-basis ( see equation (2) ) randomly into each

sequence Si, and sends the resulted sequence S′
i(i = 0, 1, . . . , k − 1) to the i− th participant Pi.
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Step 2 Eavesdropping Checking. After confirming that each participant Pi has received the sequence S′
i,

TP publishes the position and measurement basis(X-basis or Z-basis) of each decoy particle in S′
i. Pi and TP

execute eavesdropping checking similar to BB84. If the safety of the channel is not acceptable, the protocol goes

to Step 1. Otherwise, the protocol will continue. After successfully passed the eavesdropping checking, each

participant Pi will recover the sequence Si by deleting the decoy particles from S′
i .

Step 3 Encoding. Each participant Pi selects a m − length random sequence ri = (ri,1, ri,2, . . . , ri,m) ∈
{0, 1, . . . , d− 1}m, and performs the shift operator Uri,j (j = 1, 2, . . . ,m) in the form of equation ( 3 )to the j− th

particle of the sequence Si. Then he sends the resulted sequence Si together with k decoy particles (similar to

Step 1 ) to TP .

Step 4 Measurement. Having received the sequence from every participant Pi, TP will execute eavesdrop-

ping checking with every Pi separately similar to Step 2. After successfully passed the eavesdropping checking,

TP will extracts Si by deleting the decoy particles. Next, he measures each particle in Si on the Z-basis, and

the measurement result is denoted by |wi〉 = |wi,1〉|wi,2〉 · · · |wi,m〉.
Step 5 Transmitting privacy. Each participant Pi encrypts his privacy pi = (pi,1, pi,2, . . . , pi,m) into pi =

(pi,1, pi,2, . . . , pi,m) = (pi,1⊖ri,1, pi,2⊖ri,2, . . . , pi,m⊖ri,m), and sends it to TP through an authenticated channel.

Step 6 Comparison. Having received pi from every participant Pi, TP calculates:

ti = (ti,1, ti,2, . . . , ti,m)

= (pi,1 ⊕ wi,1, pi,2 ⊕ wi,2, . . . , pi,m ⊕ wi,m)

t(i, i′) = (ti,1 ⊖ ti′,1, ti,2 ⊖ ti′,2, . . . , ti,m ⊖ ti′,m))

s(i, i′) = (s(i, i′)1, s(i, i′)2, · · · , s(i, i′)m)

= (Sign[ti,1 ⊖ ti′,1], Sign[ti,2 ⊖ ti′,2], . . . , Sign[ti,m ⊖ ti′,m)])

(5)

where i, i′ ∈ {0, 1, · · · , k − 1}, i < i′ , i < j and Sign[·] is the signal function which is defined by:

Sign[x] =







1 x ∈ {1, 2, · · · , l}
0 x = 0

−1 x ∈ {l+ 1, l + 2, · · · , 2l}

(6)

For the jth(j = 1, 2, · · · ,m) elements of all participants’ privacies p0,j , p1,j, . . . , pk−1,j , TP can deduces the

size relationship of them from the values of s(i, i′)(i, i′ = 0, 1, · · · , k − 1). The rules of judgement are as follows:

If s(i, i′)j = 1, then pi,j > pi′,j ;

If s(i, i′)j = 0, then pi,j = pi′,j ;

If s(i, i′)j = −1, then pi,j < pi′,j.

(7)

4



Next, TP arranges the elements p0,j, p1,j , . . . , pk−1,j in ascending order together with a relationship symbol <

or = between every two elements, and gets a relation expression pi1
0
,j ⋖ pi1

1
,j ⋖ . . .⋖ pi1

k−1
,j , where i

j
0, i

j
1, · · · , ijk−1

is a permutation of 0, 1, · · · , k − 1 , and ⋖ denotes the symbol < or = .

At last, for each j ∈ {1, 2, · · · ,m}, TP publishes the information Rj , i
j
0⋖ i

j
1⋖ · · ·⋖ i

j
k−1 , which is consisting

of subscripts information of the relation expression. So far, all participants can get the comparison results from

Rj(j ∈ {1, 2, · · · ,m}).

2.3. Correctness of the protocol

For the convenience of description, the phase of eavesdropping checking in step 2 is not considered. Next, we

will show that our protocol can work efficiently if all participants and TP execute the protocol honestly. Consider

the jth elements p0,j, p1,j , . . . , pk−1,j(j = 1, 2, · · · ,m) of all participants.

(a) TP prepares a sequence of d− level k − particle GHZ states:

|Φ〉0,1,··· ,k−1 =
1√
d
(|0〉|0〉 · · · |0〉+ |1〉|1〉 · · · |1〉+ · · ·+ |d− 1〉|d− 1〉 · · · |d− 1〉)0,1,··· ,k−1

He splits it into k single particle sequence S0, S1, . . . , Sk−1 and sends the ith sequence Si to Pi.

(b) In the step 3 , each participant Pi selects a ri = (ri,1, ri,2, . . . , ri,m) ∈ {0, 1, . . . , d − 1}m randomly, and

performs the shift operator Uri,j in the form of equation ( 3 )to the jth particle in his own hand. Then he sends

the resulted sequence to TP .

(c)In the step 4, the final state of the jth GHZ state will be as follows:

|Φ〉0,1,··· ,k−1

= 1√
d
(|0 ⊕ r0,j〉|0⊕ r1,j〉 · · · |0⊕ rd−1,j〉+ |1⊕ r0,j〉|1 ⊕ r1,j〉 · · · |1⊕ rd−1,j〉+

· · ·+ |(d− 1)⊕ r0,j〉|(d − 1)⊕ r1,j〉 · · · |(d− 1)⊕ rd−1,j〉)0,1,··· ,k−1

= 1√
d
(|r0,j〉|r1,j〉 · · · |rd−1,j〉+ |1⊕ r0,j〉|1 ⊕ r1,j〉 · · · |1⊕ rd−1,j〉+ · · ·+

|(d− 1)⊕ r0,j〉|(d− 1)⊕ r1,j〉 · · · |(d− 1)⊕ rd−1,j〉)0,1,··· ,k−1

(8)

TP measures it in the Z-basis, and the state will collapse into one of the following states:

|r0,j〉|r1,j〉 · · · |rd−1,j〉

|1⊕ r0,j〉|1⊕ r1,j〉 · · · |1⊕ rd−1,j〉

· · ·

|(d− 1)⊕ r0,j〉|(d− 1)⊕ r1,j〉 · · · |(d− 1)⊕ rd−1,j〉

(9)

Hence, there exists an cj ∈ {0, 1, · · · , d − 1}, the GHZ state in the form of equation (8) will collapse into

|cj ⊕ r0,j〉|cj ⊕ r1,j〉 · · · |cj ⊕ rd−1,j〉, which implies that |wi,j〉 = |cj ⊕ ri,j〉(i = 0, 1, · · · , d− 1).
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(d) Each participant Pi encodes his privacy pi = (pi,1, pi,2, . . . , pi,m) ∈ {0, 1, . . . , l}m into pi = pi,1 = (pi,1 ⊖
ri,1, pi,2⊖ri,2, . . . , pi,m⊖ri,m) ∈ {0, 1, . . . , l}m, and sends pi to TP . Note that the jth elements of all participants’

privacies are encoded into p0,j ⊖ r0,j , p1,j ⊖ r1,j , · · · , pm−1,j ⊖ rm−1,j .

(e) At last, TP calculates the equation(5). Now, we only consider s(i, i′)j = Sign[ti,j ⊖ ti′,j)]( i, i′ ∈
{0, 1, · · · , d− 1})

ti,j ⊖ ti′,j

= (pi,j ⊕ wi,j)⊖ (pi′,j ⊕ wi′,j)

= [(pi,j ⊖ ri,j)⊕ (cj ⊕ ri,j)]⊖ [(pi′,j ⊖ ri′,j)⊕ (cj ⊕ ri′,j)]

= pi,j ⊖ pi′,j







∈ {1, 2, · · · , l} pi,j > pi′,j

= 0 pi,j = pi′,j

∈ {l+ 1, l+ 2, · · · , l} pi,j < pi′,j

(10)

Then TP will get

Sign[t(i, i′)] =







1 pi,j > pi′,j

0 pi,j = pi′,j

−1 pi,j < pi′,j

(11)

From s(i, i′)j = Sign[ti,j⊖ti′,j)](i, i′ ∈ {0, 1, · · · , d−1}), TP can give the size relationship of p0,j , p1,j, . . . , pk−1,j(j =

1, 2, · · · ,m) correctly.

2.4. A novel example of the protocol

Let us give a novel example for illustration without considering the eavesdropping checking. Let k = 3,m =

2, l = 4, and d = 2l+ 1 = 9. The privacies of P0, P1 and P2 are p0 = (1, 4), p1 = (2, 2), and p2 = (2, 3).

(1) TP prepares 2 identical 9 − level 3 − particle GHZ states |Φ〉10,1,2 = |Φ〉20,1,2 = 1
3
(|0〉|0〉|0〉 + |1〉|1〉|1〉 +

· · ·+ |8〉|8〉|8〉)0,1,2, splits them into 3 particle S0, S1 and S2 and sends them to P0, P1 and P2 separately.

(2) P0 (P1, P2) selects a 2 − length random sequence r0 = (4, 6) (r1 = (2, 5), r2 = (6, 1)), performs the shift

operator Ur0,j (Ur1,j , Ur2,j ) to the j − th particle of the sequence S0 ( S1, S2), where j = 1, 2, and sends the

resulted particle sequence to TP .

(3) At this moment, TP possesses the 3− particle GHZ states |Φ〉10,1,2 and |Φ〉20,1,2 which will be

|Φ〉10,1,2 = 1
3
(|0 ⊕ r0,1〉|0⊕ r1,1〉|0⊕ r2,1〉+ |1 ⊕ r0,1〉|1⊕ r1,1〉|1⊕ r2,1〉+

· · ·+ |8⊕ r0,1〉|8⊕ r1,1〉|8⊕ r2,1〉)0,1,2
= 1

3
(|4〉|2〉|6〉+ |5〉|3〉|7〉+ · · ·+ |3〉|1〉|5〉)0,1,2

|Φ〉20,1,2 = 1
3
(|0 ⊕ r0,2〉|0⊕ r1,2〉|0⊕ r2,2〉+ |1 ⊕ r0,2〉|1⊕ r1,2〉|1⊕ r2,2〉+

· · ·+ |8⊕ r0,2〉|8⊕ r1,2〉|8⊕ r2,2〉)0,1,2
= 1

3
(|6〉|5〉|1〉+ |7〉|6〉|2〉+ · · ·+ |5〉|4〉|0〉)0,1,2

(12)
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TP measures each particle in |Φ〉10,1,2 and |Φ〉20,1,2 on the Z-basis, he will get |w0〉 = |w0,1〉|w0,2〉 = |c1⊕ r0,1〉|c2 ⊕
r0,2〉, |w1〉 = |w1,1〉|w1,2〉 = |c1 ⊕ r1,1〉|c2 ⊕ r1,2〉, |w2〉 = |w2,1〉|w2,2〉 = |c1 ⊕ r2,1〉|c2 ⊕ r2,2〉, where c1, c2 ∈
{0, 1, · · · , 8}. For example, if |w0〉 = |4〉|7〉, then c1 = 0, c2 = 1, |w1〉 = |2〉|6〉, |w2〉 = |6〉|2〉.
(4) P0 (P1, P2) encodes his privacy into p0 = (p0,1 ⊖ r0,1, p0,2 ⊖ r0,2) = (6, 7) (similarly, p1 = (0, 6), p2 = (5, 2) )

by r0(r1, r2), and sends it to TP through an authenticated channel.

(5) TP calculates:

t0 = p0 ⊕ w0 = (6, 7)⊕ (4, 7) = (1, 5)

t1 = p1 ⊕ w1 = (0, 6)⊕ (2, 6) = (2, 3)

t2 = p2 ⊕ w2 = (5, 2)⊕ (6, 2) = (2, 4)

t(0, 1) = t0 ⊖ t1 = (8, 2)

t(0, 2) = t0 ⊖ t2 = (8, 1)

t(1, 2) = t1 ⊖ t2 = (0, 8)

s(0, 1) = (Sign[8], Sign[2]) = (−1, 1)

s(0, 2) = (Sign[8], Sign[1]) = (−1, 1)

s(1, 2) = (Sign[0], Sign[8]) = (0,−1)

From the equation(7) and s(0, 1) = (−1, 1), TP will get p0,1 < p1,1 and p0,2 > p1,2. Similarly, TP will get

p0,1 < p2,1 and p0,2 > p2,2 , p1,1 = p2,1 and p1,2 < p2,2. Hence, TP obtains the size relationship of their privacies,

i.e., p0,1 < p1,1 = p2,1 and p1,2 < p2,2 < p0,2. At last, he publishes the information R1 , 0 < 1 = 2 and

R2 , 2 < 3 < 0.

3. Security analysis and efficiency comparison

In this section, we will analyze the security of our protocol from both external and internal attacks. Also, we

will analyze the efficiency of our protocol and compare it with other exited protocols.

3.1. Security analysis of the protocol

Case 1 External attack. Suppose that an outsider eavesdropper, Eve, tries to obtain the privacies of

participants. From the procession of the protocol, the privacy of each participant Pi is transmitted only once

and is encrypted by a random sequence ri = (ri,0, ri,1, · · · , ri,m). Hence, Eve must find a way to intercept the

sequence ri = (ri,0, ri,1, · · · , ri,m) in Step 3 and the encrypted sequence pi = (pi,1⊖ri,1, pi,2⊖ri,2, . . . , pi,m⊖ri,m)

in Step 5. To obtain ri, he must carry out intercept-resend attack, i.e., he intercepts and takes measurements on

the particles of Si and the particles of Si, and resents them to receiver. Let us take the intercept-resend attack on

the particles of Si for example. Due to the existence of the decoy states, Eve need to choose the correct position

and measurement-basis of each decoy state in order not to detected by the eavesdropping checking. However,
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he does not have any information on the position and measurement-basis of each decoy state. If he chooses the

right position and right basis, no error will be introduced; or else, the probability of introducing error will be

at least d−1
d

. Hence, his eavesdropping behavior will be detected with 1 − (d−1
2d

)m, which will approaches to 1

when m is large enough. It is the same with the case of intercept-resend attack on the the particles of Si. There-

fore, Eve can not obtain the random sequence ri = (ri,0, ri,1, · · · , ri,m). Also, he can not obtain the sequence

pi = (pi,1 ⊖ ri,1, pi,2 ⊖ ri,2, . . . , pi,m ⊖ ri,m) in Step 5 because the channels between the TP and participants are

authenticated. From the analysis above, the protocol is immune to external attack.

Case 2 Internal attack from participants. Suppose that a participant, P0, is a dishonest participant who

tries to obtain the privacies of other participants, and TP is the semi-honest party who will not collude with

anyone. If P0 wants to steal the privacy of a certain participant Pi(i ∈ {1, 2, · · · , d−1}), he could firstly measures

the particles in the sequence of S0 on the Z-basis before performing the random shift operators on them, and

the measurement results are identical to the particles in Si. Next, to obtain the random sequence ri, P0 needs

to measure the particles in the sequence Si by using the intercept-resend attack. In this environment, P0 can be

considered as an outside attacker, and his interception behavior will be caught by Pi and TP similar to the case

of external attack. Also, P0 can not obtain the sequence pi in Step 5 because the channel between TP and Pi is

authenticated. The collusion attack from multiple participant is the same.

Case 3 Internal attack from the semi-honest third party TP . Obviously, the dishonest third party TP is

the one who can get the most information during the execution of the protocol. However, due to his semi-honesty,

he will prepare the k − particle d − level GHZ states rather than other types of particles such as single parti-

cles(even if he prepared other quantum states, his dishonest behavior would be discovered by participants in the

following way. Before step 3, all participants consult to select some positions of particles randomly, and measure

each particle of these positions using either X-basis or Z-basis. They can verify whether these quantum states

are GHZ states or not by publishing the measurement results). Next, TP will execute the protocol honestly.

The only way to derive the privacy of Pi relies on the analysis of information received from Pi. Firstly, he can

obtain pi = (pi,1 ⊖ ri,1, pi,2 ⊖ ri,2, . . . , pi,m ⊖ ri,m) legally in Step 5. So he needs to get the random sequence

ri = (ri,1, ri,2, . . . , ri,m) ∈ {0, 1, . . . , d − 1}m and nextly extracts the privacy of Pi. Apparently, the random

sequence ri = (ri,1, ri,2, . . . , ri,m) ∈ {0, 1, . . . , d − 1}m is encoded into the sequence Si which is entangle with

Sjs. When it comes to measure the particles in the sequence Si, TP will randomly get one of the following

states: |ri,1〉|ri,2〉 · · · |ri,m〉, |ri,1 ⊕ 1〉|ri,2⊕ 1〉 · · · |ri,m⊕ 1〉, · · · , |ri,1 ⊕ (d− 2)〉|ri,2⊕ (d− 2)〉 · · · |ri,m⊕ (d− 2)〉 and
|ri,1⊕(d−1)〉|ri,2⊕(d−1)〉 · · · |ri,m⊕(d−1)〉. Hence, TP can not obtain ri = (ri,1, ri,2, . . . , ri,m) ∈ {0, 1, . . . , d−1}m

accurately, and can not derive the privacy of Pi.

3.2. Efficiency comparison with existed protocols

Here, we will compare the protocol with four existed MQPC protocols in the following five aspects: quantum

resources used, the category of MQPC (size or equality comparison), the qubit or qudit efficiency which is de-

fined as η = c
q+b

(here c is the length of privacies of participants, q and b are the numbers of qudits and classical
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Table 1: Comparison between the existed four QPC protocols with ours

QPC Protocol
quantum
resources

Category
of QPC

Efficiency η
Need to share
privacy key

Security

CTH2013[16]
2− level GHZ
class states

Equality 1
3k

No Secure

HHH2017[25]
2− level Bell

states
Equality 1

8k
No Secure

LYS2014 protocol [31]
d− level entangled

states
Size 1

3k
Yes secure

HHG2015 protocol [32]
d− level GHZ and
entangled particles

Size 1
6k

No Insecure

Ours
d− level GHZ

states
Size 1

3k
No Secure

bits used in transmission and eavesdropping checking, whether participants need to share privacy common key

beforehand, and security . For the sake of discussion, it is assumed that the length of the privacies is m, and the

number of decoy particles is equal to the number of quantum particles transmitted in each MQPC protocol. The

four existing MQPC protocols are CTH2013 protocol [16], HHH2017 protocol [25], LYS2014 protocol [31], and

HHG2015 protocol [32]. Now, we will show the comparison result as follows ( see table 1 ).

(1) CTH2013 protocol. The authors proposed a 4-party QPC protocol, and a multiparty (say k−party hereafter)

QPC protocol which are used to compare the equality of the privacies. We only consider the case of k − party.

The quantum resources used in this protocol are 2 − level k − particle GHZ-class states. The transmission of

information includes two stages. First, TP prepares m k − particle GHZ-class states. Then, he splits them into

k particle-sequence and sends every sequence to the corresponding participant with m decoy particles. Second,

each participant sends his encoded privacy which is m bits to TP . Hence, the efficiency η = m
mk+mk+mk

= 1
3k
.

Besides, the participants need not to share privacy common key beforehand, and the protocol is secure at present

because there is no efficient attack for it.

(2) HHH2017 protocol. The authors proposed a k − party QPC protocol of comparing the equality in which

two TP s are introduced to deal with the comparison in a strange environment. The quantum resources used in

this protocol are 2− level k − particle GHZ-class states. The transmission of information includes three stages.

First, TP1 prepares 2m k − particle GHZ-class states. Then, he splits them into k particle-sequence and sends

every sequence to the corresponding participant with 2m decoy particles. Second, TP1 sends the information of

the GHZ states to TP2 using quantum secure direct communication and the quantum resource used here is at

least 2mk qubits. Third, each participant sends his encoded privacy which is m bits to TP1 and TP2. Hence,

the efficiency η = m
2mk+2mk+2mk+mk+mk

= 1
8k
. Besides, the participants also need not to share privacy common

key beforehand, and the protocol is secure at present.

(3) LYS2014 protocol. The authors proposed a k− party QPC protocol of comparing the sizes of privacies. The

quantum resources used in this protocol are d−level entangled states, and the participants need to share a privacy

common key K beforehand through a secure QKA protocol. The transmission of information contains three step.

First, TP prepares m k − particle d− level entangled states. Then, he splits them into k particle-sequence and
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sends each sequence to the corresponding participant with m decoy particles. Second, each participant measures

the received particle-sequence which will be transformed into a classical m − bit sequence, and he encrypts his

privacy by the classical bit-sequence and the privacy common key K using one-time pad. At last, each participant

sends his encrypted privacy information(m− bit sequence) to TP through an authenticated channel. Hence, the

efficiency η = m
mk+mk+mk

= 1
3k
. However, the actual efficiency is lower than 1

3k
because the participants need to

share a privacy common key K beforehand through a QKA protocol which will waste a lot of quantum resource.

This protocol is secure at present because there is no efficient attack for it.

(4)HHG2015 protocol. The authors proposed a k− party QPC protocol of comparing the sizes of privacies. The

quantum resources used in this protocol are d− level GHZ states and d− level entangled states. The transmission

of information includes two stages. First, TP prepares m k − particle d− level GHZ states and m k − particle

d− level entangled states. Then, TP splits the m k−particle d− level GHZ states into k particle-sequences and

sends them to the corresponding participant with m decoy particles. Also, he splits the m k− particle d− level

entangled states into k particle-sequences and sends them to the corresponding participant with m decoy parti-

cles. Second, each participant measures the first k−particle sequence. Then he performs the unitary operations,

which are decided by the measurement results and his privacy, on the second k − particle sequence and sends

the resulted k − particle sequence with m decoy particles to TP . The efficiency η = m
2mk+2mk+mk+mk

= 1
6k
.

Besides, the participants need not to share a privacy common key beforehand. Hence, the HHG2015 protocol is

much more efficient than LYS2014 protocol.

However, there is a serious bug in the HHG2015 protocol. From step 4 and step 6, We can easily get that pi = pj

and qi = qj for each i and j. If a dishonest participant(say P1), wants to steal the privacy of another one(say

P2), he will firstly intercept the particles sent from P2 and resents forged particles to TP in step 4. Secondly,

he deletes the decoy particles and measures the remaining particles after P2 published the positions of decoy

states. Therefore, P1 will get the value of MR2 = (s2 + p2 + q2)modd and s2 = (MR2 − p2 − q2)modd which is

the privacy of P2. Although this attack will be discovered by TP and P2, but they did not know the identity of

the attacker. Hence, P1 succeeded in obtaining the privacy of P2. Similarly, he can get the privacy of any other

participant without being found. So, this protocol is insecure.

(5) Our protocol. We proposed a k−party QPC protocol of comparing the sizes of privacies by using k−particle

d − level GHZ states, and the participants need not to share privacy common key beforehand. The transmis-

sion of information includes three stages. First, TP prepares m k − particle GHZ-class states. Then, he splits

them into k particle-sequence and sends each sequence to the corresponding participant with m decoy particles.

Second, After encoding the received sequence by a series of random unitary operations, each participant inserts

m decoy particles into it and sends it back to TP . Third, every participant transmits m classical bits to TP

separately. Hence, the efficiency η = m
mk+mk+mk

= 1
3k

which is as good as that of the LYS2014 protocol and

CTH2013 protocol, and our protocol is secure against external and internal attacks. However, owing to the

waste of quantum resource in the sharing the common key beforehand through a QKA protocol in the LYS2014

protocol, our protocol is more efficient than it because the participants need not to share private common key
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beforehand in our protocol. Besides, the CTH2013 protocol only solves the problem of equality comparison.

Therefore, our protocol is better than the LYS2014 protocol and CTH2013 protocol.

4. Conclusion

We presented a MQPC protocol with k− particle d− level GHZ states. In the protocol, all participants can

compare the size of their privacy with the help of a semi-honest party TP . Besides, we gave a novel example

of the proposed protocol. Security analysis shows that it is immune to both external attack and internal attack

in theory, and efficiency comparison shows that it is prior to all existing protocols of the same type. However,

our protocol is only suitable for scenarios in an ideal environment. How to improve the agreement to adapt to a

more complicated environment is our main work in the future.
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