Skip to main content
Log in

Minimum distance of the boundary of the set of PPT states from the maximally mixed state using the geometry of the positive semidefinite cone

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using a geometric measure of entanglement quantification based on Euclidean distance of the Hermitian matrices (Patel and Panigrahi in Geometric measure of entanglement based on local measurement, 2016. arXiv:1608.06145), we obtain the minimum distance between the set of bipartite n-qudit density matrices with a positive partial transpose and the maximally mixed state. This minimum distance is obtained as \(\frac{1}{\sqrt{d^n(d^n-1)}}\), which is also the minimum distance within which all quantum states are separable. An idea of the interior of the set of all positive semidefinite matrices has also been provided. A particular class of Werner states has been identified for which the PPT criterion is necessary and sufficient for separability in dimensions greater than six.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bruß, D.: Characterizing entanglement. J. Math. Phys. 43, 4237–4251 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. Xu, J.-S., Li, C.-F., Xu, X.-Y., Shi, C., Zou, X.-B., Guo, G.-C.: Experimental characterization of entanglement dynamics in noisy channels. Phys. Rev. Lett. 103, 240502 (2009)

    Article  ADS  Google Scholar 

  3. Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin (2009)

    Book  Google Scholar 

  4. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 046–2052 (1996)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  6. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phys. Rev. A 96, 022315 (2017)

    Article  ADS  Google Scholar 

  7. Imai, H., Hanaoka, G., Maurer, U., Zheng, Y., Naor, M., Segev, G., Smith, A., Safavi-Naini, R., Wild, P.R., Channels, Broadcast, et al.: Special issue on information theoretic security. IEEE Trans. Inf. Theory 52, 4348 (2006)

    Article  Google Scholar 

  8. Alonso, J.G., Brun, T.A.: Error correction with orbital angular momentum of multiple photons propagating in a turbulent atmosphere. Phys. Rev. A 95, 032320 (2017)

    Article  ADS  Google Scholar 

  9. Boileau, J.-C., Tamaki, K., Batuwantudawe, J., Laflamme, R., Renes, J.M.: Unconditional security of a three state quantum key distribution protocol. Phys. Rev. Lett. 94, 040503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  11. Gao, G., Wang, Y.: Comment on “proactive quantum secret sharing”. Quantum Inf. Process. 16, 74 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Moroder, T., Gittsovich, O., Huber, M., Gühne, O.: Steering bound entangled states: a counterexample to the stronger peres conjecture. Phys. Rev. Lett. 113, 050404 (2014)

    Article  ADS  Google Scholar 

  13. DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Thapliyal, A.V.: Evidence for bound entangled states with negative partial transpose. Phys. Rev. A 61, 062312 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Braunstein, S.L., Caves, C.M.: Geometry of quantum states. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds.) Quantum Communications and Measurement, pp. 21–30. Springer, Berlin (1995)

    Chapter  Google Scholar 

  15. Zyczkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zyczkowski, K., Slomczynski, W.: The monge metric on the sphere and geometry of quantum states. J. Phys. A Math. Gen. 34, 6689 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. Patel, A.A., Panigrahi, P.K.: Geometric measure of entanglement based on local measurement (2016). arXiv preprint arXiv:1608.06145

  18. Boyer, M., Liss, R., Mor, T.: Geometry of entanglement in the bloch sphere. Phys. Rev. A 95, 032308 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 58–160 (2000)

    Article  MathSciNet  Google Scholar 

  20. Heydari, H., Björk, G.: Entanglement measure for general pure multipartite quantum states. J. Phys. A Math. Gen. 37, 9251 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  22. Goswami, A.K., Panigrahi, P.K.: Uncertainty relation and inseparability criterion. Found. Phys. 47, 229–235 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. La Guardia, G.G., Pereira, F.F.: Good and asymptotically good quantum codes derived from algebraic geometry. Quantum Inf. Process. 16, 165 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Holik, F., Sergioli, G., Freytes, H., Giuntini, R., Plastino, A.: Toffoli gate and quantum correlations: a geometrical approach. Quantum Inf. Process. 16(2), 55 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange’s identity and wedge product. Quantum Inf. Process. 16, 118 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhou, Lan, Sheng, Yu-Bo: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17(6), 4293–4322 (2015)

    Article  ADS  Google Scholar 

  27. Banerjee, S., Panigrahi, P.K.: Parallelism of Vectors and Tangle as an Inequality in Area (2019). https://doi.org/10.13140/RG.2.2.31620.48002

  28. Zhu, X.-N., Fei, S.-M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)

    Article  ADS  Google Scholar 

  29. Zhou, L., Sheng, Y.-B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  30. Zhang, M., Zhou, L., Zhong, W., Sheng, Y.-B.: Direct measurement of the concurrence of hybrid entangled state based on parity check measurements. Chin. Phys. B 28, 010301 (2019)

    Article  ADS  Google Scholar 

  31. Sheng, Y.-B., Guo, R., Pan, J., Zhou, L., Wang, X.-F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14(3), 963–978 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gurvits, L., Barnum, H.: Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A 66, 062311 (2002)

    Article  ADS  Google Scholar 

  33. Đoković, D.Ž.: On two-distillable Werner states. Entropy 18, 216 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bandyopadhyay, S., Roychowdhury, V.: Maximally disordered distillable quantum states. Phys. Rev. A 69, 040302 (2004)

    Article  ADS  Google Scholar 

  35. Lewenstein, M., Sanpera, A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261–2264 (1998)

    Article  ADS  Google Scholar 

  36. Lasserre, J.B.: A trace inequality for matrix product. Trans. IEEE Autom. Control 40, 1500–1501 (1995)

    Article  MathSciNet  Google Scholar 

  37. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rana, S.: Negative eigenvalues of partial transposition of arbitrary bipartite states. Phys. Rev. A 87, 054301 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge valuable inputs from Prof. Somshubhro Bandyopadhyay (Bose Institute, Kolkata).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreya Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Calculation for 3-qubit Werner state to be PPT

The 3-qubit Werner state with \(1 \otimes 2\) bi-partition is given by

$$\begin{aligned} \rho _{w_{3}}= pP_{\psi _{3}}+(1-p)\frac{\mathbb {I}}{8}, \end{aligned}$$
(47)

where \(N=2^n\), \(p \in [0, 1]\); \(P_\psi \) is 3-qubit GHZ state and \(\frac{\mathbb {I}}{8}\) is the normalized identity matrix of order 8. Hence,

$$\begin{aligned} \rho _{w_{3}}=\left( \begin{array}{cccccccc} \frac{1-p}{8}+\frac{p}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{p}{2} \\ 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 \\ \frac{p}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8}+\frac{p}{2} \\ \end{array} \right) \end{aligned}$$
(48)

Carrying out the partial transposition operation, we have

$$\begin{aligned} \rho _{w_{3}}^{\mathrm{T}_B}=\left( \begin{array}{cccccccc} \frac{1-p}{8}+\frac{p}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad \frac{p}{2} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{p}{2} &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1-p}{8}+\frac{p}{2} \\ \end{array} \right) \end{aligned}$$
(49)

Eigenvalues of \( \rho _{w_{3}}^{\mathrm{T}_B}\) are found to be,

$$\begin{aligned} \frac{1}{8} (1-5 p),\frac{1-p}{8},\frac{1-p}{8},\frac{1-p}{8},\frac{1-p}{8},\frac{1}{8} (3 p+1),\frac{1}{8} (3 p+1),\frac{1}{8} (3 p+1) \end{aligned}$$

Hence, the maximum value of p such that the partially transposed Werner state is positive semidefinite is \(\frac{1}{5}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Patel, A.A. & Panigrahi, P.K. Minimum distance of the boundary of the set of PPT states from the maximally mixed state using the geometry of the positive semidefinite cone. Quantum Inf Process 18, 296 (2019). https://doi.org/10.1007/s11128-019-2411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2411-6

Keywords

Navigation