Skip to main content
Log in

A least squares identifier for a quantum non-Markovian environment model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a least squares approach to identifying an unknown damping rate function in a time-convolution-less master equation describing the non-Markovian dynamics of a probing single qubit. For the purpose of identification, we measure two kinds of time trace observables \(\langle \sigma _z\rangle \) and \(\langle \sigma _x\rangle \) with which the identification problem can be solved via our least squares approach. In the case of measuring the time trace observable \(\langle \sigma _x\rangle \), a data-driven method is also developed to estimate the unmeasured \(\langle \sigma _y\rangle \) such that the identification problem fits into the least squares framework. A physical example is given to show the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albertini, F., D’Alessandro, D.: Model identification for spin networks. Linear Algebra Appl. 394, 237–256 (2005)

    Article  MathSciNet  Google Scholar 

  2. Barata, J.C.A., Hussein, M.S.: The Moore–Penrose pseudoinverse: a tutorial review of the theory. Braz. J. Phys. 42(1), 146–165 (2012)

    Article  ADS  Google Scholar 

  3. Bonnabel, S., Mirrahimi, M., Rouchon, P.: Observer-based Hamiltonian identification for quantum systems. Automatica 45(5), 1144–1155 (2009)

    Article  MathSciNet  Google Scholar 

  4. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  5. Burgarth, D., Maruyama, K.: Indirect Hamiltonian identification through a small gateway. New J. Phys. 11(10), 103019 (2009)

    Article  ADS  Google Scholar 

  6. Burgarth, D., Yuasa, K.: Quantum system identification. Phys. Rev. Lett. 108, 080502 (2012)

    Article  ADS  Google Scholar 

  7. D’Alessandro, D.: Controllability, observability, and parameter identification of two coupled spin 1’s. IEEE Trans. Autom. Control 50(7), 1054–1058 (2005)

    Article  MathSciNet  Google Scholar 

  8. Frey, T., Leek, P.J., Beck, M., Blais, A., Ihn, T., Ensslin, K., Wallraff, A.: Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012)

    Article  ADS  Google Scholar 

  9. Gambetta, J., Wiseman, H.M.: State and dynamical parameter estimation for open quantum systems. Phys. Rev. A 64, 042105 (2001)

    Article  ADS  Google Scholar 

  10. Gută, M.: Fisher information and asymptotic normality in system identification for quantum Markov chains. Phys. Rev. A 83, 062324 (2011)

    Article  ADS  Google Scholar 

  11. Gută, M., Yamamoto, N.: System identification for passive linear quantum systems. IEEE Trans. Autom. Control 61(4), 921–936 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hou, S.Y., Li, H., Long, G.L.: Experimental quantum Hamiltonian identification from measurement time traces. Sci. Bull. 62(12), 863–868 (2017)

    Article  Google Scholar 

  13. Kato, Y., Yamamoto, N.: Structure identification and state initialization of spin networks with limited access. New J. Phys. 16(2), 023024 (2014)

    Article  ADS  Google Scholar 

  14. Le Bris, C., Mirrahimi, M., Rabitz, H., Turinici, G.: Hamiltonian identification for quantum systems: well-posedness and numerical approaches. ESAIM Control Optim. Calc. Var. 13(2), 378–395 (2007)

    Article  MathSciNet  Google Scholar 

  15. Mabuchi, H., Khaneja, N.: Principles and applications of control in quantum systems. Int. J. Robust Nonlinear 15, 647–667 (2005)

    Article  MathSciNet  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Owari, M., Maruyama, K., Takui, T., Kato, G.: Probing an untouchable environment for its identification and control. Phys. Rev. A 91, 012343 (2015)

    Article  ADS  Google Scholar 

  18. Phan, M.Q., Rabitz, H.: Learning control of quantum-mechanical systems by laboratory identification of effective input–output maps. Chem. Phys. 217(2), 389–400 (1997)

    Article  Google Scholar 

  19. Schirmer, S.G., Kolli, A., Oi, D.K.L.: Experimental Hamiltonian identification for controlled two-level systems. Phys. Rev. A 69, 050306 (2004)

    Article  ADS  Google Scholar 

  20. Sone, A., Cappellaro, P.: Hamiltonian identifiability assisted by a single-probe measurement. Phys. Rev. A 95, 022335 (2017)

    Article  ADS  Google Scholar 

  21. Wu, R.B., Li, T.F., Kofman, A.G., Zhang, J., Liu, Y.X., Pashkin, Y.A., Tsai, J.S., Nori, F.: Spectral analysis and identification of noises in quantum systems. Phys. Rev. A 87, 022324 (2013)

    Article  ADS  Google Scholar 

  22. Xue, S., Zhang, J., Petersen, I.R.: Identification of non-Markovian environments for spin chains. IEEE Trans. Control Syst. Technol. (2018). https://doi.org/10.1109/TCST.2018.2879042

    Article  Google Scholar 

  23. Xue, S.B., Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: Quantum operation for a one-qubit system under a non-Markovian environment. J. Phys. B At. Mol. Phys. 44(15), 154016 (2011)

    Article  ADS  Google Scholar 

  24. Xue, Z., Lin, H., Lee, T.H.: Identification of unknown parameters for a class of two-level quantum systems. IEEE Trans. Autom. Control 58(7), 1805–1810 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J., Sarovar, M.: Quantum Hamiltonian identification from measurement time traces. Phys. Rev. Lett. 113, 080401 (2014)

    Article  ADS  Google Scholar 

  26. Zhang, J., Sarovar, M.: Identification of open quantum systems from observable time traces. Phys. Rev. A 91, 052121 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61873162 and 61473199, in part by the Shanghai Pujiang Program under Grant 18PJ1405500, in part by the Suzhou Key Industry Technology Innovation Project SYG201808, in part by the Key Laboratory of System Control and Information Processing in Ministry of Education of China Scip201804. This work is also supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT1900304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibei Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Tan, L., Jiang, M. et al. A least squares identifier for a quantum non-Markovian environment model. Quantum Inf Process 18, 310 (2019). https://doi.org/10.1007/s11128-019-2425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2425-0

Keywords

Navigation