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Abstract We provide several constructions of special unextendible entangled
bases with fixed Schmidt number k (SUEBk) in Cd⊗Cd′

for 2 ≤ k ≤ d ≤ d′. We
generalize the space decomposition method in Guo [Phys. Rev. A 94, 052302
(2016)], by proposing a systematic way of constructing new SUEBks in Cd⊗Cd′

for 2 ≤ k < d ≤ d′ or 2 ≤ k = d < d′. In addition, we give a construction
of a (pqdd′ − p(dd′ −N))-number SUEBpk in Cpd ⊗ Cqd′

from an N -number
SUEBk in Cd⊗Cd′

for p ≤ q by using permutation matrices. We also connect
a (d(d′ − 1) + m)-number UMEB in Cd ⊗ Cd′

with an unextendible partial
Hadamard matrix Hm×d with m < d, which extends the result in [Quantum
Inf. Process. 16(3), 84 (2017)].

Keywords Unextendible entangled basis · Schmidt number · Permutation
matrix · Hadamard matrix

1 Introduction

In 1999, Bennett et al. found that unextendible product basis (UPB), a set
of incomplete orthonormal product states whose complementary space has
no product states, also can displays nonlocality [1]. Consequently, the notion
of unextendible basis has been explored extensively. It is shown that UPB
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also can be used to construct bound entangled states [2–6]. In 2009, Bravyi
and Smolin introduced the concept of unextendible maximally entangled bases
(UMEB), which is a set of incomplete orthonormal maximally entangled states
whose complementary space has no maximally entangled states. UMEBs can
be used to construct examples of states for which one-copy entanglement of
assistance (EoA) is strictly smaller than the asymptotic, and can be used to
find quantum channels that are unital but not convex mixtures of unitary
operations [7, 8]. Recently, Guo et al. [9, 10] proposed the concept of special
unextendible entangled bases with fixed Schmidt number k (SUEBk), which
extends the definitions of both UPB and UMEB. An SUEBk is a set of incom-
plete orthonormal special entangled states with Schmidt number k in Cd⊗Cd′

(d ≤ d′), i.e., with the same Schmidt coefficients, whose complementary sub-
space has no special entangled states with Schmidt number k. An SUEBk is
a UPB when k = 1 and is a UMEB when k = d.

One of the main topics in this field is the existence of different unextendible
bases [7, 9, 11–15]. Bravyi and Smolin gave a 6-number UMEB in C3 ⊗ C3

and a 12-number UMEB in C4 ⊗ C4 [7]. Wang et al. showed that there are
UMEBs in Cd ⊗ Cd except for d = p or 2p, where p is a prime and p ≡ 3
(mod 4) [11]. For d < d′, Li et al. showed that UMEBs exist in any Cd ⊗ Cd′

and gave explicit constructions [12]. There are several recursive constructions
for UMEBs, such as a construction of a (pqd2 − p(d2 −N))-number UMEB in
Cpd⊗Cqd (p ≤ q) from an N -number UMEB in Cd⊗Cd, and a construction of
a (pqd2 − d(pq−N))-number UMEB in Cpd ⊗Cqd (p ≤ q) from an N -number
UMEB in Cp ⊗ Cq [13–15]. It was shown that SUEBks exist in any bipartite
system when 2 ≤ k < d ≤ d′ [9].

In this paper, we develop more constructions of SUEBks in Cd ⊗ Cd′

for
2 ≤ k ≤ d ≤ d′. In Section 3, we provide a systematic way of constructing
SUEBks from a special entangled basis with Schmidt number k, and show that
there are more new SUEBks in Cd⊗Cd′

for 2 ≤ k < d ≤ d′ or 2 ≤ k = d < d′.
In Section 4, we give a recursive construction of a (pqdd′−p(dd′−N))-number
SUEBpk in Cpd ⊗ Cqd′

from an N -number SUEBk in Cd ⊗ Cd′

for p ≤ q by
using permutation matrices. Especially, it generates a (pqdd′ − p(dd′ − N))-
number UMEB in Cpd ⊗ Cqd′

from an N -number UMEB in Cd ⊗ Cd′

for
p ≤ q. In Section 5, we show that there is a (d(d′ − 1) +m)-number UMEB in
Cd ⊗Cd′

if there exists an unextendible partial Hadamard matrix Hm×d. Our
constructions generalize and improve most results in [8, 9, 11–16], and provide
new SUEBks and UMEBs.

2 Definition and preliminary

Assume that 1 ≤ k ≤ d ≤ d′ in this paper. Let [n] denote the set {1, 2, · · · , n},
[n]∗ denote the set {0, 1, · · · , n − 1}, and {a, a, . . . , a}k denote a multiset of
k numbers of a. The Schmidt decomposition of a pure state |ψ〉 ∈ Cd ⊗ Cd′

[17]: |ψ〉 =
∑k−1

i=0 λi|i〉|i′〉, where {|i〉} and {|i′〉} are orthonormal sets of Cd

and Cd′

, respectively. Then the Schmidt number of |ψ〉, denoted by Sr(|ψ〉), is
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k. If all the Schmidt coefficients are { 1√
k
, 1√

k
, 1√

k
· · · , 1√

k
}k, then |ψ〉 is called

a special entangled state with Schmidt number k. A special entangled state
with Schmidt number k is a product state when k = 1; and it is a maximally
entangled state when k = d.

Let Md×d′ be the space of all d × d′ complex matrices equipped with an
inner product defined by (A,B) = Tr(A†B). There is a one-to-one relation
between the space Cd ⊗ Cd′

and the space Md×d′ [10, 18]:

|ψi〉 =
∑

k,l

a
(i)
k,l|k〉|l′〉 ∈ Cd ⊗ Cd′ ⇐⇒ Ai = (a

(i)
k,l) ∈ Md×d′,

Sr(|ψi〉) = rank(Ai), 〈ψi|ψj〉 = Tr(A†
iAj),

(1)

where {|k〉} and {|l′〉} are the standard computational bases of Cd and Cd′

,
respectively. A d×d′ matrix is called a k-singular-value-1 matrix if its nonzero
singular values are {1, 1, 1 · · · , 1}k. Then |ψi〉 is a special entangled state with
Schmidt number k if and only if

√
kAi is a k-singular-value-1 matrix. Specially,

when d = d′, |ψi〉 is a maximally entangled state if and only if
√
dAi is a unitary

matrix [13].

Definition 1 [18] A set of special entangled states with Schmidt number k
{|ψi〉}dd

′

i=1 of Cd ⊗Cd′

is called a special entangled basis with Schmidt number
k (SEBk) if 〈ψi|ψj〉 = δij .

Definition 2 [9, 10] A set of special entangled states with Schmidt number k
{|ψi〉 : i ∈ [n], n < dd′} of Cd⊗Cd′

is called an n-number special unextendible
entangled basis with Schmidt number k (SUEBk) if

(i) 〈ψi|ψj〉 = δij ;
(ii) If 〈ψi|φ〉 = 0 for all i ∈ [n], then |φ〉 can not be a special entangled state

with Schmidt number k.

Note that the condition (ii) in Definition 2.2 is a bit weaker than that in
[9, 10], where it states that “if 〈ψi|φ〉 = 0 for all i ∈ [n], then Sr(|ψ〉) 6= k”.
Specially, an SEBk is a product basis and an SUEBk is a UPB when k = 1;
an SEBk is a maximally entangled basis (MEB) and an SUEBk is a UMEB
when k = d [1, 6–8]. Analogous to SEBks and SUEBks, we give the definitions
regarding to k-singular-value-1 matrices.

Definition 3 A set of k-singular-value-1 matrices {Ai}dd
′

i=1 of Md×d′ is called

a k-singular-value-1 Hilbert-Schmidt basis (SV1Bk) if Tr(A†
iAj) = kδij .

Definition 4 A set of k-singular-value-1 matrices {Ai : i ∈ [n], n < dd′} of
Md×d′ is called an n-number unextendible k-singular-value-1 Hilbert-Schmidt
basis (USV1Bk) if

(i) Tr(A†
iAj) = kδij ;

(ii) If Tr(A†
iB) = 0 for all i ∈ [n], then B can not be a k-singular-value-1

matrix.
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Due to the one-to-one relation, {|ψi〉} is an SEBk if and only if {Ai} is an
SV1Bk; and {|ψi〉} is an SUEBk if and only if {Ai} is a USV1Bk.

Lemma 1 [18] If k|dd′, then there is an SEBk in Cd ⊗Cd′

, and consequently
there is an SV1Bk in Md×d′ .

Let L denote a subspace of Md×d′, L⊥ denote the complementary space
of L, and ⊕ denote the direct sum. Inspired by Lemmas 2 and 3 of [13], we
get the following two lemmas.

Lemma 2 Let Md×d′ = L ⊕ L⊥. If there is an SV1Bk {Ai} in L and there
is no k-singular-value-1 matrix in L⊥, then {Ai} is a USV1Bk in Md×d′.

Lemma 3 Let Md×d′ = L ⊕ L⊥. If there is an SV1Bk {Ai} in L and a
USV1Bk {Bi} in L⊥, then {Ai} ∪ {Bi} is a USV1Bk in Md×d′.

3 Constructions of SUEBks from SEBks

In this section, we introduce several constructions of SUEBks from SEBks in
Cd ⊗ Cd′

.
In the following notations, each L defines a subspace of Md×d′ which con-

sists of all matrices having zero entries in the specified places. The subscripts
of L(i) denote the size of the submatrices consisting of stars for i ∈ [5], and
the size of the bottom right submatrix for i = 6. Let

L(1)
d×(d′−i) =







∗ · · · ∗ 0 · · · 0
...

. . .
...

...
. . .

...
∗ · · · ∗ 0 · · · 0







d×d′

, L(2)
d×i =







0 · · · 0 ∗ · · · ∗
...

. . .
...

...
. . .

...
0 · · · 0 ∗ · · · ∗







d×d′

,

L(3)
(d−i)×d′

=





















∗ · · · ∗
...

. . .
...

∗ · · · ∗
0 · · · 0
...

. . .
...

0 · · · 0





















d×d′

, L(4)
i×d′ =





















0 · · · 0
...

. . .
...

0 · · · 0
∗ · · · ∗
...

. . .
...

∗ · · · ∗





















d×d′

,

L(5)
(d−i)×(d′−t) =





















∗ · · · ∗ 0 · · · 0
...

. . .
...

...
. . .

...
∗ · · · ∗ 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0





















d×d′

and L(6)
i×t =





















0 · · · 0 ∗ · · · ∗
...

. . .
...

...
. . .

...
0 · · · 0 ∗ · · · ∗
∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
∗ · · · ∗ ∗ · · · ∗





















d×d′

,
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then Md×d′ has direct-sum decompositions L(1)
d×(d′−i)⊕L(2)

d×i, L
(3)
(d−i)×d′

⊕L(4)
i×d′

and L(5)
(d−i)×(d′−t) ⊕ L(6)

i×t.

We apply Lemmas 1 and 2 to the following four cases.

(1) k|d. For any i ∈ [k − 1] satisfying d′ − i ≥ k, use decomposition

Md×d′ = L(1)
d×(d′−i) ⊕ L(2)

d×i.

Since k|d, there is an SV1Bk in L(1)
d×(d′−i) from Lemma 1. As the rank of

any matrix in L(2)
d×i is no more than i < k, then there is no k-singular-value-

1 matrix in L(2)
d×i. Thus there is a d(d′ − i)-number USV1Bk in Md×d′ by

Lemma 2.

By similar arguments, we have the following three cases.

(2) k ∤ d. Write d = sk + r such that 0 < r < k. For any t ∈ [k − r]∗ satisfying
d′ − t ≥ k, use

Md×d′ = L(5)
sk×(d′−t) ⊕ L(6)

r×t.

Then there is an sk(d′ − t)-number USV1Bk in Md×d′.
(3) k|d′. For any i ∈ [k − 1] satisfying d− i ≥ k, use decomposition

Md×d′ = L(3)
(d−i)×d′

⊕ L(4)
i×d′ .

Then there is a d′(d− i)-number USV1Bk in Md×d′.
(4) k ∤ d′. Write d′ = sk+ r such that 0 < r < k. For any t ∈ [k− r]∗ satisfying

d− t ≥ k, use

Md×d′ = L(5)
(d−t)×sk

⊕ L(6)
t×r.

Then there is an sk(d− t)-number USV1Bk in Md×d′.

For any k, d and d′ satisfying the conditions of any of the above four cases,
we can construct SUEBks in Cd ⊗Cd′

from SEBks. However, if k = d = d′ or
k = 1, none of the four cases are satisfied. So we can not use this method to
construct UMEBs in Cd ⊗ Cd or UPBs in Cd ⊗ Cd′

. We summarize them in
the following theorem.

Theorem 1 When 2 ≤ k < d ≤ d′ or 2 ≤ k = d < d′, there are four different
classes of SUEBks as the cases (1)-(4) above.

Example 1 There is a 28-number SUEB4 in C6 ⊗ C7.
Since 4 ∤ 6, we can get a 28-number SUEB4 in C6 ⊗C7 from Case (2) with

t = 0.

|ψ1〉 =
1

2
(|00〉 + |11〉 + |22〉 + |33〉), |ψ2〉 =

1

2
(|01〉 + |12〉 + |23〉 + |34〉),

|ψ3〉 =
1

2
(|02〉 + |13〉 + |24〉 + |35〉), |ψ4〉 =

1

2
(|03〉 + |14〉 + |25〉 + |36〉),
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Table 1: Our results about SUEBks in Cd ⊗ Cd′

, 2 ≤ k ≤ d ≤ d′.

Condition No. of SUEBk

k|d d(d′ − i), i ∈ [k− 1], d′ − i ≥ k

d = sk + r, r ∈ [k − 1] sk(d′ − t), t ∈ [k− r]∗, d′ − t ≥ k

k|d′ d′(d− i), i ∈ [k − 1], d− i ≥ k

d′ = sk + r, r ∈ [k − 1] sk(d− t), t ∈ [k− r]∗, d− t ≥ k

|ψ5〉 =
1

2
(|04〉 + |15〉 + |26〉 + |30〉), |ψ6〉 =

1

2
(|05〉 + |16〉 + |20〉 + |31〉),

|ψ7〉 =
1

2
(|06〉 + |10〉 + |21〉 + |32〉), |ψ8〉 =

1

2
(|00〉 − |11〉 + |22〉 − |33〉),

|ψ9〉 =
1

2
(|01〉 − |12〉 + |23〉 − |34〉), |ψ10〉 =

1

2
(|02〉 − |13〉 + |24〉 − |35〉),

|ψ11〉 =
1

2
(|03〉 − |14〉 + |25〉 − |36〉), |ψ12〉 =

1

2
(|04〉 − |15〉 + |26〉 − |30〉),

|ψ13〉 =
1

2
(|05〉 − |16〉 + |20〉 − |31〉), |ψ14〉 =

1

2
(|06〉 − |10〉 + |21〉 − |32〉),

|ψ15〉 =
1

2
(|00〉 + |11〉 − |22〉 − |33〉), |ψ16〉 =

1

2
(|01〉 + |12〉 − |23〉 − |34〉),

|ψ17〉 =
1

2
(|02〉 + |13〉 − |24〉 − |35〉), |ψ18〉 =

1

2
(|03〉 + |14〉 − |25〉 − |36〉),

|ψ19〉 =
1

2
(|04〉 + |15〉 − |26〉 − |30〉), |ψ20〉 =

1

2
(|05〉 + |16〉 − |20〉 − |31〉),

|ψ21〉 =
1

2
(|06〉 + |10〉 − |21〉 − |32〉), |ψ22〉 =

1

2
(|00〉 − |11〉 − |22〉 + |33〉),

|ψ23〉 =
1

2
(|01〉 − |12〉 − |23〉 + |34〉), |ψ24〉 =

1

2
(|02〉 − |13〉 − |24〉 + |35〉),

|ψ25〉 =
1

2
(|03〉 − |14〉 − |25〉 + |36〉), |ψ26〉 =

1

2
(|04〉 − |15〉 − |26〉 + |30〉),

|ψ27〉 =
1

2
(|05〉 − |16〉 − |20〉 + |31〉), |ψ28〉 =

1

2
(|06〉 − |10〉 − |21〉 + |32〉).

Remark 1 Propositions 1 and 2 in [9] belong to our Case (4); Propositions
3 and 4 in [9] belong to our Case (2); Propositions 5 and 6 in [9] belong to
our Case (1) and Case (3). But we give more constructions than those in [9],
which can be easily seen from the constructions of SUEB4s in C7⊗C12. In fact,
Case (3) provides a 72-number SUEB4, a 60-number SUEB4 and a 48-number
SUEB4 in C7 ⊗ C12, while [9] only gives a 48-number SUEB4 in C7 ⊗ C12.
Also, Our constructions cover all of the results in [8, 12, 13, 16]. See Table 1.
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4 SUEBpks from SUEBks

In this section, we give a general construction of SUEBpks in Cpd ⊗Cqd′

from
SUEBks in Cd ⊗ Cd′

, where p ≤ q. We introduce a combinatorial object first.
A permutation matrix is a square matrix that has exactly one entry of 1 in
each row and each column and 0s elsewhere. By abusing of this concept, for
nonsquare matrices, we call a p × q matrix (p ≤ q) a permutation matrix if
it has exactly one entry of 1 in each row and at most one entry of 1 in each
column and 0s elsewhere. Let Jp×q be a p× q matrix with all entries being 1,
then Jp×q can be decomposed as Jp×q = P0 + P1 + · · · + Pq−1, where each Pi

is a permutation matrix. For example, let Pl = P0T
l, l ∈ [q]∗, where

P0 =











1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 . . . 1 0 · · · 0











p×q

and T =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0















q×q

.

Theorem 2 If there is an N -number SUEBk in Cd ⊗ Cd′

constructed from
Section 3, and k|dd′, then there is a (pqdd′ − p(dd′ −N))-number SUEBpk in
Cpd ⊗ Cqd′

for p ≤ q.

Proof Given any decomposition Jp×q = P0 +P1 + · · ·+Pq−1. For any l ∈ [q]∗,
a ∈ [p]∗, define a p× q matrix Qa

l by

Qa
l (i, j) =

{

0 if Pl(i, j) = 0,

ξ
a(i−1)
p if Pl(i, j) = 1,

where ξp = e
2πi
p . For each matrix M ∈ Mpd×qd′ , write it as a block matrix

M = (Mi,j)p×q, where each Mi,j is a d × d′ submatrix. Then let Ll be a
subspace of Mpd×qd′ which consists of all block matrices M with Mi,j = 0 if
Pl(i, j) = 0. Then we have space decomposition,

Mpd×qd′ = L0 ⊕ L1 ⊕ · · · ⊕ Lq−1,

such that dimLl = pdd′ for all l ∈ [q]∗.
Assume that {Aj}Nj=1 is an N -number USV1Bk in Md×d′ constructed from

Section 3. Since k|dd′, there is an SV1Bk in Md×d′ by Lemma 1. Denote it by
{Bs,t}, where s ∈ [d] and t ∈ [d′]. For any a ∈ [p]∗, l ∈ [q − 1], s ∈ [d], t ∈ [d′]
and j ∈ [N ], define

C
s,t
a,l = Qa

l ⊗Bs,t and C
j
a,0 = Qa

0 ⊗Aj .

Obviously, Cs,t
a,l ∈ Ll for any l ∈ [q − 1] and C

j
a,0 ∈ L0. Now we show that

{Cs,t
a,l} ∪ {Cj

a,0} is a (pqdd′ − p(dd′ −N))-number USV1Bpk in Mpd×qd′ .
If the nonzero singular values of two matrices A and B are {1, 1, · · · 1}p and

{1, 1, · · ·1}k, respectively, then the singular values of A⊗B are {1, 1, · · · , 1}pk
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[19]. Thus it is easy to see that Cs,t
k,l and Cj

a,0 are pk-singular-value-1 matrices.

It is also easy to see that Tr[(C s̃,t̃
ã,l)

†Cs,t
a,l ] = pkδãaδs̃sδt̃t and Tr[(C j̃

ã,0)†Cj
a,0] =

pkδãaδj̃j , where a, ã ∈ [p]∗; s, s̃ ∈ [d]; t, t̃ ∈ [d′]; j, j̃ ∈ [N ] and l ∈ [q − 1].

It follows that {Cs,t
a,l : s ∈ [d], t ∈ [d′], a ∈ [p]∗} is an SV1Bpk in Ll for

any l ∈ [q − 1]. We assert that {Cj
a,0} is a USV1Bpk in L0. Given any D =

(Di,j)p×q ∈ L0, let Di , Di,j when P0(i, j) = 1 for i ∈ [p]. If Tr(D†Cj
a,0) = 0

for all a ∈ [p]∗ and j ∈ [N ], then

Tr(D†
1Aj) + ξapTr(D†

2Aj) + · · · + ξa(p−1)
p Tr(D†

pAj) = 0. (2)

This is equivalent to WYj = 0 for all j ∈ [N ], where

W =











1 1 · · · 1
1 ξp · · · ξp−1

p

...
...

. . .
...

1 ξp−1
p · · · ξ(p−1)2

p











p×p

and Yj =











Tr(D†
1Aj)

Tr(D†
2Aj)
...

Tr(D†
pAj)











p×1

.

Since det(W ) 6= 0, we know that Yj = 0 for all j ∈ [N ]. It means that

Tr(D†
1Aj) = Tr(D†

2Aj) = · · · = Tr(D†
pAj) = 0 for all j ∈ [N ]. As {Aj}Nj=1 is a

USV1Bk in Md×d′ constructed from Section 3, we have rank(Di) < k for all
i ∈ [p]. Since the nonzero singular values of Di, i ∈ [p], form all the nonzero
singular values of D, D can not be a pk-singular-value-1 matrix. This shows
that {Cj

a,0} is a USV1Bpk in L0.

We conclude that {Cs,t
a,l}∪{C

j
a,0} is a (pqdd′−p(dd′−N))-number USV1Bpk

in Cpd ⊗ Cqd′

by Lemma 3.

From the proof of Theorem 2, we see that if k = d and Di, i ∈ [p] satisfy
Eq (2) for all j ∈ [N ], then for any USV1Bd {Aj}Nj=1 (not necessarily from
Section 3), Di is not a d-singular-value-1 matrix for i ∈ [p], and consequentlyD
is not a pd-singular-value-1 matrix. Therefore, we have the following corollary.

Corollary 1 If there is an N -number UMEB in Cd ⊗ Cd′

, then there is a
(pqdd′ − p(dd′ −N))-number UMEB in Cpd ⊗ Cqd′

for p ≤ q.

Our method is better than the method in [13–15] since we can choose any
decomposition of Jp×q into permutation matrices, and choose any different
SV1Bds {Bs,t} in Md×d′.

Example 2 There is a 32-number UMEB in C4 ⊗ C9 constructed from a 4-
number UMEB in C2 ⊗ C3.

Let {Ai}4i=1 be a 4-number USV1B2 in M2×3 that is constructed from
Section 3 Case (1) with i = 1:

A1 =

(

1 0 0
0 1 0

)

, A2 =

(

1 0 0
0 −1 0

)

,
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A3 =

(

0 1 0
1 0 0

)

, A4 =

(

0 1 0
−1 0 0

)

.

Let

Bs,t =

(

1 0 0
0 (−1)s 0

)





0 1 0
0 0 1
1 0 0





t

,

where s ∈ [2]∗, t ∈ [3]∗. It is easy to see that {Bs,t} is an SV1B2 in M2×3.
Let J2×3 = P0 + P1 + P2, Pl = P0T

l, l ∈ [3]∗, where

P0 =

(

1 0 0
0 1 0

)

, T =





0 1 0
0 0 1
1 0 0



 .

For any l ∈ [3]∗, a ∈ [2]∗, define a 2 × 3 matrix Qa
l by

Qa
l (i, j) =

{

0 if Pl(i, j) = 0,

(−1)a(i−1) if Pl(i, j) = 1.

Then for each s ∈ [2]∗, t ∈ [3]∗ and j ∈ [4],

C
s,t
0,1 =

(

0 Bs,t 0
0 0 Bs,t

)

, C
s,t
1,1 =

(

0 Bs,t 0
0 0 −Bs,t

)

,

C
s,t
0,2 =

(

0 0 Bs,t

Bs,t 0 0

)

, C
s,t
1,2 =

(

0 0 Bs,t

−Bs,t 0 0

)

,

C
j
0,0 =

(

Aj 0 0
0 Aj 0

)

, C
j
1,0 =

(

Aj 0 0
0 −Aj 0

)

.

Thus {Cs,t
0,1, C

s,t
1,1, C

s,t
0,2, C

s,t
1,2, C

j
0,0, C

j
1,0 : s ∈ [2]∗, t ∈ [3]∗, j ∈ [4]} is a 32-

number USV1B4 in M4×9.

Remark 2 Theorem 2 gives a unified recursive construction for SUEBks, in-
cluding the special case about UMEBs when k = d in Corollary 1. In fact,
Corollary 1 generalizes all the recursive constructions about UMEBs in [13–
15] (see Table 2): Theorem 1 in [13, 14], is a special case when d = d′ and
p = q; Theorem 1 in [15] is the case when d = d′; and Theorem 2 in [15] is
the case when p = q. Corollary 1 can obtain more new examples than the
constructions in [15], see Example 2.

Remark 3 Corollary 1 can also provide new examples of UMEB in Cd ⊗ Cd′

that are different from the ones constructed in Section 3. This can be easily
seen from Example 2. Note that we can also get a 32-number UMEB in C4 ⊗
C9 either from Case (1) with i = 1 or Case (4) with t = 0 in Section 3.
For both cases, the Schmidt numbers of the states are no more than 1 in
the complementary subspace of these UMEBs. However, there is a state with
Schmidt number 2 in the complementary subspace of the UMEB in Example 2.
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Table 2: Recursive constructions for UMEBs (p ≤ q, d ≤ d′)

Condition No. of UMEB Reference

N-.UMEB in Cd ⊗ Cd ((qd)2 − q(d2 −N))-.UMEB in Cqd ⊗ Cqd [13, 14]
N-.UMEB in Cd ⊗ Cd (pqd2 − p(d2 −N))-.UMEB in Cpd ⊗ Cqd [15]
N-.UMEB in Cp ⊗ Cq (pqd2 − d(pq −N))-.UMEB in Cpd ⊗ Cqd [15]

N-.UMEB in Cd ⊗ Cd′ (pqdd′ − p(dd′ −N))-.UMEB in Cpd ⊗ Cqd′ This paper

5 UMEBs from partial Hadamard matrices

In [11], the authors gave a construction of UMEBs in Cd ⊗ Cd from partial
Hadamard matrices. In this section, we generalize this construction to UMEBs
in Cd ⊗ Cd′

with d ≤ d′.
A Hadamard matrix is a complex square matrix with entries in the unit

circle T whose rows are pairwise orthogonal. It is called a partial Hadamard
matrix when the number of rows is less than the number of columns. As in
Section 4, there is a matrix decomposition Jd×d′ = P0 +P1 + · · ·Pd′−1, d ≤ d′.
For any l ∈ [d′]∗, a ∈ [d]∗, define a d× d′ matrix Qa

l by

Qa
l (i, j) =

{

0 if Pl(i, j) = 0

ξ
a(i−1)
d if Pl(i, j) = 1

.

Let Ll be the subspace of Md×d′ which consists of all matrices in Md×d′ with
mi,j = 0 if Pl(i, j) = 0. Then

Md×d′ = L0 ⊕ L1 ⊕ · · · ⊕ Ld′−1,

and dimLl = d for all l ∈ [d′]∗. Obviously, Qa
l ∈ Ll for any l ∈ [d′]∗. It is

easy to see that {Qa
l : a ∈ [d]∗} is an SV1Bd in Ll for any l ∈ [d′ − 1]. Let

Z0 = {Qa
l : l ∈ [d′ − 1], a ∈ [d]∗}. Similar to the method in Theorem 2, if there

is a USV1Bd Z1 in L0, then Z0 ∪ Z1 is a USV1Bd in Md×d′ by Lemma 3.
Now we construct a USV1Bd Z1 in L0 from a partial Hadamard matrix.

Given an m× d partial Hadamard matrix Hm×d = (hi,j) with m < d, define
a d× d′ matrix Hy, y ∈ [m], by

Hy(i, j) =

{

0 if P0(i, j) = 0,
hy,i if P0(i, j) = 1,

and let
Z1 = {Hy}my=1,

then each Hy ∈ L0 and it is a d-singular-value-1 matrix. Further,

Tr(H†
yHy′) =

d
∑

l=1

hy,lhy′,l = dδyy′

for all y, y′ ∈ [m] by the definition of Hadamard matrices. So we only need
the unextendibility of Z1, which is equivalent to the unextendibility of the
Hadamard matrix H .
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Theorem 3 Given a partial Hadamard matrix Hm×d, then Z0∪Z1 is a (d(d′−
1) +m)-number UMEB in Md×d′ if and only if Hm×d can not be extended to
an (m+ 1) × d partial Hadamard matrix.

Example 3 There is a (5(d′− 1) + 3)-number UMEB in C5⊗Cd′

for all d′ ≥ 5.

Let

H3×5 = (hi,j) =







1 1 1 1 1
1 −1 1 ω ω2

√
5+i√
6

i −
√
5+i√
6

√
6ω2i+(ω−1)i

3

√
6ωi+(ω2−1)i

3






,

where ω = e
2πi
3 , then it is a partial Hadamard matrix that can not be extended

to a 4 × 5 partial Hadamard matrix [11]. Let J5×d′ = P0 + P1 + · · · + Pd′−1,
Pl = P0T

l, l ∈ [d′]∗, where

P0 =













1 0 0 0 0 0 · · · 0
0 1 0 0 0 0 · · · 0
0 0 1 0 0 0 · · · 0
0 0 0 1 0 0 · · · 0
0 0 0 0 1 0 · · · 0













5×d′

and T =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0















d×d′

.

For any l ∈ [d′]∗, a ∈ [5]∗, define a 5 × d′ matrix Qa
l by

Qa
l (i, j) =

{

0 if Pl(i, j) = 0

ξ
a(i−1)
5 if Pl(i, j) = 1

,

Let Z0 = {Qa
l , l ∈ [d′ − 1], a ∈ [5]∗}. Define a 5 × d′ matrix Hy, y ∈ [3], where

Hy =













hy,1 0 0 0 0 0 · · · 0
0 hy,2 0 0 0 0 · · · 0
0 0 hy,3 0 0 0 · · · 0
0 0 0 hy,4 0 0 · · · 0
0 0 0 0 hy,5 0 · · · 0













5×d′

.

Then Z0 ∪ {H1, H2, H3} is a (5(d′ − 1) + 3)-number USV1B5 in M5×d′ .

Remark 4 Proposition 1 in [11] is a special case of Theorem 3 for d = d′.
Theorem 3 provides new UMEBs, which can be seen from Example 3. In fact,
if d′ ≥ 10, then there is a 5(d′ − i)-number UMEB in C5 ⊗ Cd′

, where i ∈ [4];
if d′ = 5 + r, r ∈ [4], then there is a 5(d′ − i)-number UMEB in C5 ⊗ Cd′

,
where i ∈ [r] [8, 12, 13, 16]. All these UMEBs have number divisible by 5. But
Example 3 constructs a UMEB with number (5(d′ − 1) + 3). The construction
in Theorem 3 is also different from the constructions in Section 3 for the same
reason. See Table 3 about a summary of numbers in UMEBs.



12 F. Shi et al.

Table 3: Results about UMEBs in Cd ⊗ Cd′

.

System No. of UMEB Reference

d = d′ = 2 no UMEB [7]
d = d′ = 3 6 [7]
d = d′ = 4 12 [7]
d = d′ = 5 23 [11]
d′

2
< d < d′ d2 [8]
d′ ≥ 2d dm, d′ −m ∈ [d− 1] [12]

d′ = d+ r, r ∈ [d− 1] dm, d′ −m ∈ [r] [12]
d′ = qd+ r, r ∈ [d− 1] qd2 [12, 16]

d′ ≥ 2d d(d′ − i), i ∈ [d− 1] [13]
d′ = d+ r, r ∈ [d− 1] d(d′ − i), i ∈ [r] [13]

d = 5, d′ ≥ 5 5(d′ − 1) + 3 This paper

6 Conclusion and discussion

We proposed three methods to construct SUEBks (UMEBs) in Cd ⊗ Cd′

: a
construction of SUEBks from SEBks; a recursive construction of SUEBpks in
Cpd ⊗ Cqd′

from SUEBks in Cd ⊗ Cd′

; and a construction of UMEBs from
unextendible partial Hadamard matrices. We also give three examples: a 28-
number SUEB4 in C6⊗C7; a 32-number UMEB in C4⊗C9 constructed from a
4-number UMEB in C2⊗C3; and a (5(d′−1)+3)-number UMEB in C5⊗Cd′

,
respectively. Our results cover and improve most results in [8, 9, 11–16]. We
hope that our results would be useful in studying quantum state tomography
and cryptographic protocols with fixed Schmidt number.

Although there exist a lot of constructions of UMEBs and SUEBks, there
are still many open questions. Are there UMEBs in Cd⊗Cd when d = p or 2p,
where p is a prime and p ≡ 3 (mod 4)? The minimum open case is when d = 7,
which was said to have been solved in [11], but there is a mistake since k4 can
be zero in the construction. Further, what are the minimum and maximum
numbers in SUEBks or UMEBs if they exist? Are there SEBks in Cd ⊗ Cd′

when k ∤ dd′?
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