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ABSTRACT
By using the quantum Fisher information (QFI), we address the process of single-parameter
estimation in the presence of bosonic as well as fermionic environments and protection of
information against the noise. In particular, the quantum interferometric power (IP) of the
evolved state of the system is uncovered as an important lower bound for the QFIs of ini-
tially encoded parameters. Moreover, we unveil new witnesses of non-Markovianity, that can
be used to detect efficiently the memory effects and backflow of information from the envi-
ronment to the system. On the other hand, we also investigate the multiparameter estimation
of initial parameters encoded into the quantum state of a two qubit system and obtain an-
alytical formula of the corresponding QFI matrix. In particular, the corresponding quantum
Cramer-Rao bounds in both single and multiparameter estimations are analysed. In addition,
we illustrate that the quantum coherence and purity of the evolved state of the probes are two
key elements in realizing optimum multiparameter estimation.

Keywords: Parameter estimation, quantum Fisher information matrix, quantum interferometric power, non-Markovianity

witness

1. Introduction

Direct measurements of many quantities in physics are not possible, either in principle or due to ex-
perimental limitations. In particular, this is true for quantum systems where their variables such as
purity and entanglement are associated with no quantum observables. Under these conditions, the val-
ues of the parameter are usually inferred from a set of observables or a set of indirect measurements
of a different observable. This procedure is addressed in quantum estimation theory by using a mea-
sure called the quantum Fisher information (QFI) [1–16]. In the formalism of quantum sensing and
metrology, the objective is to find the fundamental precision bounds of parameter estimations and the
optimal measurement strategies saturating them. Early work in this field outstandingly focused on sin-
gle parameter estimations [17], whose quantum enhanced limit has been proven to always be attainable
[1]. However, applications of quantum metrology to microscopy, optical, electromagnetic, and gravi-
tational field imaging usually demand multiple parameter estimations [18]. Hence, recent years have
seen a surge of interest in exploring enhancement of quantum metrology in the case of simultaneous
estimation of multiple parameters [19–26]. Multi-parameter quantum enhanced sensing has provided a
novel strategy for studying the information processing capabilities of multipartite or multimode quan-
tum correlated states and measurements.

Recently, inspired by the seminal work of Baumgratz et al. [27], there is increasing interest in quan-
titative and axiomatic studies of coherence [28–35]. Quantum coherence is one of the old but always
significant concepts in quantum mechanics, and now it has been investigated as a necessary resource
for quantum information processing and quantum metrology. Because QFI is mathematically related
to some other functions previously proposed to quantify the quantum coherence, such as the relative
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entropy [36], fidelity based on the distance measurement [37], and the skew information [38], etc., it is
logically reasonable [39, 40] to use the QFI for quantifying the quantum coherence. More interestingly,
the proposal according to the QFI to quantify quantum coherence is experimentally testable, different
from most of the pure axiomatic functions proposed previously, as the lower and upper bounds of the
QFI are practically measurable. Because QFI plays a fundamental role in parameter estimation, it is de-
sirable to investigate whether the coherence measure provides any insight into multiparameter quantum
metrology.

One of the fundamental concepts playing an important role in quantum metrology is non-
Markovianity [41] often characterized in terms of the backflow of information from environment to
system or the presence of the environment memory. A number of non-Markovian measures and wit-
nesses have been recently proposed [42]. Among the most significant ones, let us mention those based
on the deviation of the dynamical maps from divisible CPTP maps [43, 44] and those based on chan-
nel capacities [45], the nonmonotonicity of the trace distance or distinguishability [46], entanglement
[43], and quantum mutual information [47]. Other significant works to quantify the non-Markovianity
include the flow of QFI [48], volume of Gaussian states [49], local quantum uncertainty [50], and coher-
ence [51, 52]. Moreover, in Ref. [53], it has been shown that fidelity between dynamical time-evolved
states is a witness of non-Markovianity such that negative fidelity difference reveals the non-Markovian
feature. Also, the fidelity associated with the initial state and the dynamically evolved state was shown
to be larger in the non-Markovian evolution compared to that in the corresponding Markovian case.
Hence, it is interesting to investigate more the role of fidelity as a witness of non-Markovianity. On the
other hand, in Ref. [54], after attaching an ancilla A to the (principal) system S, the authors introduced
the quantum interferometric power (IP) [55, 56], defined in terms of the minimal QFI obtained by lo-
cal unitary evolution of the ancilla in an interferometry process, to characterize the non-Markovianity
interaction of the principal system with its environment. Now a question arises: Can IP reveal the
non-Markovian behaviour of the system without using an ancilla?

A larger QFI means that we can estimate the parameter with a higher precision. On the other hand,
finding a lower bound to the QFI, we can check whether or not one can obtain a minimum precision in
the process of estimation. S. Luo [57, 58] showed that in the unitary evolution the Wigner-Yanase skew
information is majorized by the QFI associated with the phase parameter. Besides, in Ref. [59] it has
been experimentally extracted a lower bound to metrologically useful asymmetry and entanglement of
a two-qubit system in an optical setup, by measuring its speed during a unitary evolution. Moreover,
it has been proven that [55, 56, 60] quantum correlations, measured by the local quantum uncertainty
(LQU) or IP, that were already present in the initial (input) state, guarantee a minimum sensitivity
in the protocol of optimal phase estimation of local unitary evolution. We remark that the QFIs are
obtained from the output estimation data, while the LQU or IP is measured on the input probe states.
On the other hand, for few special open quantum systems, i.e., two coupled qubits interacting with
the independent non-Markovian Lorentzian form environments [61] and two modes of a Dirac field
described by relatively accelerated parties [62], it has been illustrated that the LQU of the evolved
state is majorized by the QFI associated with the phase parameter encoded into the initial state of the
system. It is also interesting to investigate how the evolved state IP of the open quantum system can be
employed to investigate the multi-parameter estimation and metrological scaling associated with the
initial state of the system.

In this paper we discuss about independent and simultaneous estimations of the entanglement as
well as mixedness parameters of initial state of the system interacting with bosonic and fermionic
(spin) environments. Removal of the decoherence effects and realization of the QFI trapping, playing
important roles in quantum communication protocols, are also addressed. We show in particular that
the amount of evolved state quantum correlations as quantified by IP, guarantee a minimum precision,
as quantified by the QFI, in the estimation protocol. Moreover, we find that the bosonic environment
is robust against backflow of information to the system while the non-Markovian dynamics can occur
in the presence of spin environment. Hence, we explore the evolved state IP, LQU and fidelity as three
novel witnesses of non-Markovianity such that the collapse-revival behaviour of the fidelity and posi-
tive time-derivatives of the IP and LQU can be used to detect the intervals that the non-Markovianity
occurs. On the other hand, by analytical calculation of the QFIM associated with the evolution of the
input state, the uncertainties have been derived and analysed through the QCRBs for joint estimation of
the parameters. In addition, the role of coherence and purity in the process of multiparameter estimation
is addressed.

This paper is organized as follows. In Sec. 2, a brief review of the multi-parameter estimation theory
and the IP are presented. The models and the reduced density matrices are introduced in Sec. 3. In
Sec. 4, the problem of single parameter estimation and introduction of the IP as its lower bound are
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analysed completely. In Sec. 5, our new witnesses of non-Markovianity are presented. Moreover, the
multi-parameter estimation problem is discussed completely in Sec. 6. Finally, Sec. 7 is devoted to the
discussion and conclusion.

2. The Preliminaries

2.1. Quantum parameter estimation

Let Φλ be a quantum channel depending on a set of parameters λ = (λ1, ..., λn) that we intend to
estimate them by sending an input quantum probe ρ and then measuring output ρλ = Φλ(ρ). The
measurements correspond to a positive operator valued measure (POVM), that is, a set of positive op-

erators {Πx} such that
∑

x
ΠxΠ

†
x = I and such that p(x|λ) ≡

∏

i

p(xi|λ) = Tr[Πxρλ] denotes the

probability distribution for results x = (x1, ..., xM ) of the measurements performed M-times. . More-
over, according to obtained results of the measurement, parameters are estimated by using an estimator

λ̃(x) = (λ̃1(x), , ..., λ̃n(x)). We say that λ̃(x) is an unbiased estimator if E(λ̃) ≡∑
x
p(x|λ)λ̃(x) = λ

[i.e., its expected value coincides with the true value of the parameter(s)] [63, 64]. The Cramér-Rao

bound declares that, for all unbiased estimators λ̃, the covariance matrix with elements defined as
Cov[λ̃]ij = E[λ̃iλ̃j ]− E[λ̃i]E[λ̃j ] satisfies [21, 23, 24]

Cov[λ̃] ≥ 1

M
I(λ)−1, (1)

where M represents the number of experimental runs (M = 1 for definiteness); and where I−1 denotes
the inverse of the Fisher information (FI) matrix whose elements are given by [64]

Iij =
∑

x

1

p(x|λ)
∂p(x|λ)
∂λi

∂p(x|λ)
∂λj

. (2)

The classical FI is further bounded by the quantum Fisher information matrix (QFIM) F via the matrix
inequality F ≥ I [65]. In order to compute the QFIM, we should first obtain the Symmetric Logarithmic
Derivative (SLD) Lλj

(j = 1, 2, ..., p) satisfying the operator equation

∂ρ(λ)

∂λj
=

1

2
[Lλj

ρ(λ) + ρ(λ)Lλj
]. (3)

where ρ is the density operator. Then, the corresponding QFIM elements are given by

Fij =
1

2
Tr[ρ(Lλi

Lλj
+ Lλj

Lλi
)]. (4)

The QFI gives the ultimate precision in the multi-parameter estimation quantified by the quantum
Cramer-Rao bound (QCRB)

Cov[λ̃] ≥ F(λ)−1, (5)

In the special case where each parameter is estimated independently (i.e., single-parameter estimation),
the inequality reads [37, 63]

(δλj)i ≥
1

Fjj
, (6)

where δλj ≡ Var(λ̃j) ≡ E(λ̃2j )− E(λ̃j)
2 and Fjj ≡ F (λj) represents the QFI of parameter λj given

by

F (λj) = Tr[ρ(λ)L2
λj
]. (7)

In the general case, i.e., simultaneous estimation of parameters, the inequality for the variance of
each parameter is obtained as

(δλj)s ≥ [F(λ)−1]jj , (8)
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It is clear to see that if there exists nonzero off-diagonal elements in the QFI matrix, the uncertainty
bounds for simultaneous estimation of parameters may be different from the independent cases.

Taking the trace of both sides of Eq. (5), we obtain a lower bound on the total variance of all the
parameters that should be estimated [21]

δ ≡
∑

j

(δλj)s ≡ Tr(Cov[λ̃]) ≥ Tr(F(λ)−1), (9)

For a single parameter, using the eigenvectors of the SLD operator as the POVM [66], we find that the
equality I = F can always be achieved and hence the QCRB (6) may be saturated. However, simul-
taneous estimation of parameters in a single metrology protocol may be more challenging procedure
than the individual estimation of them. Because the optimal measurement for a given parameter is
formed from projectors corresponding to the eigenbasis of the SLD, we can immediately conclude
that if ∀ (λj , λk) ∈ λ : [Lλj

, Lλk
] = 0 then there is a single eigenbasis for all SLDs and thus a

common measurement optimal from the point of view of extracting information on all parameters si-
multaneously. Of course, it is only a sufficient but not a necessary condition. In fact, if the SLDs do not
commute, this does not necessarily imply that it is impossible to simultaneously extract information on
all parameters with precision matching that of the separate scenario for each [66].

2.2. Quantum interferometric power

A significant phase estimation scenario is implemented by estimation through interferometric mea-
surements [56]. A bipartite system AB prepared into the input state ρAB is injected through a two-arm

channel. Subsystem A experiences phase shift UA = e−iHΛ

Aθ , generated by Hamiltonian HΛ
A having

non-degenerate spectrum Λ, while subsystem B is completely unaffected. This restriction is applied
in order to understand the role of non-classical correlations in this scenario. The phase θ, being not
directly measurable, denotes the unknown parameter we intend to estimate. Moreover, it is supposed
that the estimation is blind, i.e., only the spectrum of the Hamiltonian, generating the encoded phase,
is known during the input preparation of the phase estimation. There is no more information about
eigenbasis of the Hamiltonian . It can be shown that, in this scenario, a quantifier for the worst-case
precision is a bona fide measure of non-classical correlations. The worst-case QFI for a given state is
given by [55]

IPΛ
A(ρAB) =

1

4
min
HA

[F (ρAB,θ)], (10)

whereF (ρAB,θ) represents the QFI of the output state ρAB,θ = (UA⊗IB)ρAB(UA⊗IB)† with respect
to the phase. The minimization is performed over all Hamiltonians with the given non-degenerate
spectrum Λ . This quantity, called Interferometric Power (IP) of the state ρAB , quantifies the minimum
sensitivity in interferometric phase estimation. It can be proved that the IP has the same properties of
the measures of non-classical correlations, hence it can be used as a discord-like quantity.

There is a simplified formula for the IP of qubit-qudit systems, making it an easily computable
measure of non-classical correlations. In this case, the IP is obtained as [55, 56]

IPΛ
A(ρAB) = χmin(WAB), (11)

that is, the minimal eigenvalue of the 3× 3-matrix MAB whose elements are given by

(MAB)mn =
1

2

∑

i,j:pi+pj 6=0

(pi − pj)
2

pi + pj
〈ψi|σmA ⊗ IB|ψj〉AB〈ψj |σnA ⊗ IB|ψi〉AB (12)

where σi’s denote the Pauli matrices.
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3. The Model

3.1. Bipartite spin-boson model

The first model that we consider is two interacting two-level systems, both coupled to an external
reservoir of bosonic field modes, i.e., two qubits coupled to an environment of harmonic oscillators.
The model can be mathematically described by the Hamiltonian of the free two-qubit system HS , the
interaction Hamiltonian between the qubits and the external bath HI , and the free Hamiltonian of the
external reservoir (bath) HB :

HS =
~Ω1

2
σ1
z +

~Ω2

2
σ2
z + γσ1

zσ
2
z , (13)

HI = σ1
z ⊗

N
∑

n=1

λnqn + σ2
z ⊗

N
∑

n=1

gnqn, (14)

HB =
N
∑

n=1

~ωna
†
nan (15)

where Ωi represents the characteristic frequency of ith qubit, and γ is the coupling strength between
the two spin qubits. Moreover, reminding the equivalence between the bosonic reservoir and the set
of N quantized harmonic oscillators characterized by frequencies {ωn} [67], we define λn and gn,
respectively, as Spin 1 and Spin 2 coupling constants to nth oscillator in the environment. A quan-
tum Ohmic bath at zero temperature is investigated and it is used subindexes 1, 2 or 12 referring
to different decoherence factors of both qubits. For instance, the decoherence factor appearing due
to the interaction between qubit 1(2) and the environment is represented by Γ1(2), while Γ12 de-
notes the interaction between the composite system and the environment. On the other hand, defining

Ji(ω) = γ0i/4ω
nΛn−1e−ω/Λ as the spectral density [68] of the environment associated to each spin

of the system or the composite system, we absorb the coupling constants λn ≡ λ and gn ≡ g in the
dimensionless dissipative constants, i.e., γ01 ∼ λ2, γ02 ∼ g2, as well as γ012 ∼ λg, and obtain the
following forms for the decoherence factors [69]:

Γ1(t) = e−2γ01log(1+Λ2t2), (16)

Γ2(t) = e−2γ02log(1+Λ2t2), (17)

Γ12(t) = e−2γ012log(1+Λ2t2), (18)

where Λ denotes the environmental frequency cutoff.
The two qubits are initially prepared in the following state

ρ(0) =
1− r

4
I + r|ϑ〉〈ϑ| (19)

where r ∈ (0, 1], represents the mixing of the state and

|ϑ〉 =
√

1− p|00〉+√
p|11〉 (20)

in which p represents its degree of the entanglement. It is easy to see when p = 1/2, Eqs. (20) is Bell
state and Eq. (19) defines the so-called Werner states playing a significant role in quantum information
processing. Moreover, a correspondence between the temperature T of the one-dimensional Heisenberg
two-spin chain with a magnetic field B along the z axis and r of the Werner state has been established
[70].

It can be proved that the evolved reduced density matrix is given by [69]
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ρ1(t) =



















1− r

4
+ r(1 − p) 0 0 r

√

p(1− p)e−i(Ω1+Ω2)tΓ(t)

0
1− r

4
0 0

0 0
1− r

4
0

r
√

p(1− p)ei(Ω1+Ω2)tΓ(t) 0 0
1− r

4
+ rp



















, (21)

where
Γ(t) ≡ Γ1(t)Γ2(t)Γ

2
12(t). (22)

3.2. Bipartite spin-spin model

One of the most appropriate models in the low-temperature regime is typically the spin environment.
Particularly, experiments designed to investigate the macroscopic quantum coherence and decoherence
require temperatures close to absolute zero for proper operation. We consider the two-qubit system
coupled to an external environment composed of N spins, modelled by the Hamiltonians:

HS =
~Ω1

2
σ1
z +

~Ω2

2
σ2
z + γσ1

zσ
2
z , (23)

HE =

N
∑

i=1

hiσxi, (24)

HI = σ1
z ⊗

N
∑

n=1

εiσzi + σ2
z ⊗

N
∑

n=1

λiσzi, (25)

where ξi (λi) denotes the coupling between qubit 1 ( qubit 2) and the spins of the environment, while
hi in the free Hamiltonian of the environment represents the tunneling matrix element for the ith-
environmental spin.

Preparing the initial state (19), we find the following expression for the reduced density matrix [69]

ρ2(t) =



















1− r

4
+ r(1 − p) 0 0 r

√

p(1− p)e−i(Ω1+Ω2)tQ(t)

0
1− r

4
0 0

0 0
1− r

4
0

r
√

p(1− p)ei(Ω1+Ω2)tQ(t) 0 0
1− r

4
+ rp



















, (26)

in which the decoherence factor Q(t) is given by

Q(t) =

N
∏

i=1





1− [
2(εi + λi)

2

h2i + (εi + λi)2
]sin2(t

√

h2i + (εi + λi)2)





. (27)

4. Single parameter estimation

4.1. Single parameter estimation in the presence of bosonic environment

We consider the two-qubit system for independent estimation of parameters r and p encoded in the
initial state. Changing the basis, we see that density matrix (21) can be written in the block diagonal
form

ρ1 = ̺1 ⊕ ̺2, (28)
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where

̺1 =







1− r

4
+ r(1 − p) r

√

p(1− p)e−i(Ω1+Ω2)tΓ(t)

r
√

p(1− p)ei(Ω1+Ω2)tΓ(t)
1− r

4
+ rp






, (29)

and

̺2 =







1− r

4
0

0
1− r

4






. (30)

Then, using the method introduced in [14, 15] (also see Sec. 6.1 ) we compute the SLD operator,
leading to following associated QFIs:

Fi1(r) =
3 r − 3− 8

(

Γ2 − 1
)

(p− 1) p (2 r − 1)

(r − 1)

(

r

[

r

(

16 (Γ2 − 1) (p− 1) p− 3

)

+ 2

]

+ 1

) , (31)

Fi1(p) =

r2
[

(p− 1) p (2 e+ r)
2 − Γ2

(

e (2 p− 1) + (p− 1) r

)(

e (2 p− 1) + pr

)]

(p− 1) p (2 e+ r)

(

e2 + er + (Γ2 − 1) (p− 1) pr2
) , (32)

where

e =
1− r

4
. (33)

(a) (b)

Figure 1. (a) QFI associated with independent estimation of the mixedness parameter as function of p
for r = 0.6. (b) The same quantity versus r for p = 0.4.

We first focus on investigating the behaviour of Fi1(r), i.e., QFI associated with the mixedness
parameter r. Figure 1 shows the variation of Fi1(r) versus entanglement and mixedness parameter.
As seen in Fig. 1a, using more entangled initial states leads to more loss of quantum information,
extracted from the measurement in the process of estimation, and consequently decrease of the QFI.
The best estimation is obtained for ( p = 0, 1) (non-entangled initial state), and the minimum of the
QFI occurs for p = 1/2 at which the entanglement of the initial state is maximized. This contradicts
the well-known fact that entanglement usually enhances the estimation [7, 71–76].

Figure 1b illustrates which values of r are better estimated. Clearly, the best estimation is obtained
for r = 1, i.e., pure initial state ρ(0) = |ϑ〉〈ϑ|. Moreover, differentiating from Fi1(r) with respect to r
shows that when p = 0, 1, for which the initial state entanglement is minimized, the minimum point of
the QFI occurs at r = 1/3.

For analysis of the QFI dynamics and its behaviour versus the decoherence effect, we assume that
the qubits are coupled to the bosonic ohmic environment by the same dimensionless coupling, i.e.,
γ1 = γ2 = γ12 = γ0. As seen in Fig. 2(a), the QFI dynamics exhibits a decreasing behaviour because
of reduction in the precision of estimation. Similarly, a larger coupling constant leads to decrease in
QFI originating from flow of information to the environment (see Fig. 2(b)). On the other hand, there is
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(a) (b)

Figure 2. (a) Dynamics of QFI associated with independent estimation of r for γ0 = 0.01 and r = 0.9.
(b) The QFI as a function of the coupling constant for Λt = 1.2 and r = 0.2.

(a) (b)

Figure 3. (a) QFI associated with independent estimation of the degree of initial entanglement as a
function of r for Λt = 0.6, γ0 = 0.01. (b) The same quantity versus p for Λt = 0.3, γ0 = 0.01

a surprising result using a non-entangled initial state such that it causes removal of these decoherence
effects. In fact, the entanglement parameter p plays the role of a quantum key for turning off the
decoherence effects in the process of estimating the mixedness parameter. In this condition, the QFI,
given by the following expression, is only dependent on parameter r intending to estimate it;

F p=0,1
i1 (r) =

−3 r + 3

(r − 1)
2
(3 r + 1)

(34)

Therefore, we obtain the QFI trapping exhibiting asymptotic behavior with the value given by Eq.
(34). The primary reason is that the bath cannot take the information during the interaction with the
qubits when they have been prepared in a non-entangled initial state.

Figure 3 shows the behaviour of the QFI associated with the independent estimation of the degree
of initial state entanglement. As illustrated in Fig. 3(a), the best estimation occurs when the qubits have
been prepared in the pure state mathematically equivalent to (r = 1). In particular, One can freeze
the evolution of the QFI and protect it against the decoherece by using a pure initial state. Hence, the
corresponding QFI, i.e., its maximum value attainable in the process of estimating the entanglement
degree is given by

F r=1
i1 (p) =

1

p(1− p)
. (35)

Clearly, it is independent of the decoherence effects. On the other hand, when the initial state is max-
imally entangled (p = 1/2), the most inaccurate estimation occurs (see Fig. 3(b)). Nevertheless, It
is possible to detect the initial maximal entanglement by a trick; preparing the qubits in a maximally
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entangled state, complete trapping of the QFI, associated with the entanglement degree is completely,
is achieved. Particularly, decoherece-free estimation again can be implemented according to the fol-
lowing expression of the QFI:

F
p=1/2
i1 (p) =

8r2

1 + r
(36)

For other initial states, the QFI falls as time goes on or the coupling constant increases, similar to
the behaviour of Fi1(r) shown in Fig. 2 (blue line).

4.2. Single parameter estimation in the presence of spin environment

Figure 4. Dynamics of QFIs associated with independent estimations of the degree of initial entangle-
ment and the mixedness parameter for N = 5, p = 0.1, r = 0.9, h = 0.1, and λ = 0.2.

(a) (b)

Figure 5. (a) QFIs associated with independent estimations of initial parameters r and p as functions of
the coupling coefficient for N = 20, p = 0.1, r = 0.9, h = 0.1, t = 10. (b) The same quantities as
functions of the tunneling parameter for N = 20, p = 0.1, r = 0.9, λ = 0.1, t = 10.

The QFIs corresponding to parametrs r and p are given by replacing Γ with Q in Eqs. (31) and (32),
i.e.,

Fi2(r) =
3 r − 3− 8

(

Q2 − 1
)

(p− 1) p (2 r − 1)

(r − 1)

(

r

[

r

(

16 (Q2 − 1) (p− 1) p− 3

)

+ 2

]

+ 1

) , (37)
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(a)

(b)

Figure 6. QFIs associated with independent estimations of initial parameters p and r as functions of
time for p = 0.1, r = 0.9, h = 0.1, λ = 0.2 and different values of N .

Fi2(p) =

r2
[

(p− 1) p (2 e+ r)
2 −Q2

(

e (2 p− 1) + (p− 1) r

)(

e (2 p− 1) + pr

)]

(p− 1) p (2 e+ r)

(

e2 + er + (Q2 − 1) (p− 1) pr2
) . (38)

The results illustrated in Fig. 1 as well as Fig. 3 and ones obtained for the bosonic environment in
terms of the initial state, specially Eqs. (34-36) also holds for the spin environment. Moreover, the QFIs
synchronously oscillate with time as they are suppressed to the minimum value and then rise, showing
the revivals of the information (see Fig. 4 ). Within this regime,Q(t) presents oscillations describing a
quasicoherent exchange of information between the qubits and the spin environment. This phenamena
of collapse and revival of the QFIs with time implies that the precision of estimation may enhance
again during some time period. These oscillations can be regarded as evidence of the protection of
information against the noise and the enhancement of coherence in the open quantum system, which
originate from the reversed flow of information from the environment back to the quantum system.
Considering the coupling between each spin of the system and the external reservoir is equal, i.e.,
εi = λi ≡ λ and assuming hi ≡ h, we see that the period of oscillations is given by

T =
2π√

h2 + 4λ2
(39)

and Q(t) becomes

Q(t) =

[8

(

cos
(

t
√
h2 + 4λ2

)

)2

λ2 + h2 − 4λ2

h2 + 4λ2

]N

. (40)

Besides, we find that both QFIs simultaneously exhibit oscillatory behaviour such that the periods at
which their collapses and revivals appear coincide. In other words, exchange of information about
entanglement and mixedness parameter between the qubits and the spin environment occurs simulta-
neously. In particular, the maximum points of the QFIs coincide, which means that the estimations of
those parameters, characterizing the initial state of the qubits, are simultaneously optimized.

The variations of the QFIs with respect to the coupling coefficient and tunneling parameter are
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illustrated in Fig. 5. It is seen that the range of nonzero values of the QFIs as well as the points at
which the estimations of the initial parameters are optimized, interestingly coincide. In addition, Fig.
5(a) shows that for both QFIs, investigated in terms of the coupling parameter, there are growing
subordinate maxima appearing between principal maxima.

The QFIs are very sensitive to the size of the spin environment such that the range of nonzero values
of the QFIs, decreases as N increases (see Fig. 6). Besides, as the number of spins composing the en-
vironment is increased, the heights of the subordinate peaks decrease while the principal peaks remain
unchanged. Overall, apart from the number of spins composing the environment, the best estimations
occur when the measurements are performed at instants tn = nT, (n = 0, 1, 2, ...) where T is given
by Eq. (39).

4.3. Lower bound on QFIs in terms of IP

Recalling the definition of the IP in Sec. 2.2 and estimating the imprinted phase by a measurement at the
output, it can be shown that [55] (the inverse of) non-classical correlations quantified by IP upper bound
the smallest possible variance of the estimator corresponding to interferometric phase estimations. In
other words, the existence of an Hamiltonian and a measurement, such that the phase parameter can be
estimated with a variance lower than a value determined by inverse of IP, is guaranteed. It should be
noted that in this scenario perfect unitary evolution and ideal measurements are assumed, although we
allow for noise in the prepared input state before encoding the phase.

Here our numerical calculation shows that the QFIs of evolved state of the system, with respect
to independent estimations of parameters encoded in the qubits before interaction with the environ-
ments, are lower bounded by the amount of the non-classical correlations of the noisy evolved state as
quantified by the IP:

IP(ρ(t)) ≤ Fi(r), IP(ρ(t)) ≤ Fi(p). (41)

Therefore, according to inequality (6), the quantum correlations of the evolved state, measured by the
IP, can guarantee an upper bound on the smallest possible variance of the initial parameter estimation
performed at each instant of time in the presence of bosonic or spin environment. Using Eq. (11), one
can obtain the IP for quantum states (21) and (26)

IP(ρ(t)) = min

(

r2
(

e
(

2− 4
(

g2 − 1
)

(p− 1) p
)

+
(

g2 − 1
)

(p− 1) pr
)

4 e2 + 2 er + (g2 − 1) (p− 1) pr2
,−4

g2 (p− 1) pr2

2 e+ r

)

,

(42)
where g stands for Γ and Q in the presence of bosonic and spin environment, respectively.

5. Flow of information

5.1. Trace distance and memory effects

The trace norm defined by ‖ ρ ‖= Tr
√

ρ†ρ leads to a measure for the distance between two quantum

states ρ1 and ρ2 known as trace distance [56]D(ρ1, ρ2) = 1
2 ‖ ρ1−ρ2 ‖. It is bounded by the inequality

0 ≤ D(ρ1, ρ2) ≤ 1, where D(ρ1, ρ2) = 0 if and only if ρ1 = ρ2, while it equals one if and only if
the two states are orthogonal. We know that two density operators are said to be orthogonal provided
that their supports, defined as the subspaces spanned by their eigenstates with nonzero eigenvalue, are
orthogonal. It can be shown that trace distanceD(ρ1, ρ2) may be interpreted as the distinguishability of
states ρ1 and ρ2. Moreover, any completely positive and trace preserving map (CPTP) E is a contraction
for the trace distance [77], i.e., D(E(ρ1), E(ρ2)) ≤ D(ρ1, ρ2), for all quantum states ρ1,2. Since any
dynamical map Et describing time evolution of an open quantum system is CPTP, the trace distance
between the time-evolved quantum states can never be larger than the trace distance between the initial
states. Hence, the dynamics generally diminishes the distinguishability of the states comparing it with
the initial preparation. Certainly, this general fact does not imply thatD(ρ1(t), ρ2(t)) where ρ1,2(t) ≡
Et(ρ1,2(0)) is a monotonically decreasing function of time [78].

According to BLP definition [46], proposed by Breuer, Laine and Piilo (BLP), a quantum evolu-
tion, mathematically described by a quantum dynamical maps Et, is said to be Markovian when, for all

11



pairs of initial states ρ1(0) and ρ2(0), the trace distanceD(ρ1(t), ρ2(t)) monotonically decreases at all
instants. Thus, quantum Markovian evolution means a continuous loss of information from the open
system to the environment. However, quantum memory effects arise if there is a temporal flow of infor-
mation from the environment to the quantum system. The flowing back of information from the envi-
ronment allows the earlier open system states to play a role in the later dynamics of the system, imply-
ing the emergence of the memory effects and non-Markovianity. Hence, a quantum evolution is called
non-Markovian if there is an initial pair of states ρ1(0) and ρ2(0) such that the trace distance between

the corresponding states ρ1,2(t) is started to increase for a period of time:
d

dt
D(ρ1(t), ρ2(t)) > 0.

5.2. Non-Markovianity witnesses

Figure 7. Comparison between the dynamics of QFIs and evolved fidelity for N = 10, p = 0.1, r =
0.7, h = 0.1, λ = 0.26, and Ω = 75.

Figure 8. Comparison among the dynamics of QFIs, IP and LQU for N = 10, p = 0.1, r = 0.7, h =
0.1, and λ = 0.26.

A witness of non-Markovianity is a quantity that can be used to detect the non-Markovian behaviour
of the quantum system. The use of the QFI to witness non-Markovianity is originally due to Lu et al
in [48]. These authors proved that the QFI is monotonically decreasing under Markovian dynamics,

therefore, if
∂F (λ)

∂t
> 0 for some period of time, the time evolution is non-Markovian [12, 76].

Using the above criteria, here we unveil three important new non-Markovianity witnesses, i.e.,
evolved fidelity, IP and LQU for monitoring the memory effects in the second model. Considering
two quantum states ρ1 and ρ2 on the Hilbert space, we can define the fidelity between those states as

f(ρ1, ρ2) = Tr

√

√

ρ2ρ1
√

ρ2 measuring the degree of closeness of quantum states ρ1 and ρ2. Inserting

(19) and (26) into this equation, we find the following expression for the evolved fidelity:

f(ρ(0), ρ2(t)) = Q(t)r
√

p (1− p) cos (Ω) +
r

4
+

1

4
(43)
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where Ω = Ω1 +Ω2.
The variations of the QFIs and evolved fidelity versus time for N = 10, p = 0.1, r = 0.7, h =

0.1, λ = 0.26, as well as Ω = 75 are illustrated in Fig. 7. It is seen that, in periods where the fidelity
is constant, the QFIs also remain unchanged. On the other hand, at instants when the collapse-revival
behaviour of the fidelity is started, the enhancement of the QFIs commences and consequently the non-
Markovianity occurs because of information backflow from the environment to the system. In fact,
in periods when the dynamics is non-Markovian, the fidelity exhibits growing oscillatory behaviour,
such that the optimum estimations are achieved at instants when the fidelity is maximized. This result
originates from the fact that we intend to estimate the initial parameters and the fidelity has been
computed versus the initial state of the system. Moreover, the ranges of nonzero values of the QFIs
coincide with the ranges at which the fidelity oscillates, such that in the periods when the QFIs increase
(fall), the fidelity displays increasing (falling) oscillatory behaviour. Overall, in the period when the
estimation precision is enhanced (destroyed) and hence the dynamics is (non)-Markovian, the fidelity
grows (falls) with oscillatory behaviour. Therefore, the evolved fidelity computed versus the initial state
of the system can be used as an efficient witness of non-Markovianity. Interestingly, we see that the
strength of fidelity collapse-revival behaviour is proportional to amplitude of QFIs oscillations, such
that in the vicinity of subordinate maxima the amplitude of fidelity oscillations is also low. Moreover, it
should be noted that more larger (smaller) frequency Ω causes an increase (decrease) in the frequency
with which the fidelity oscillates at each interval where the collapse-revival behaviour occurs.

Here we introduce the evolved state IP and LQU as significant witnesses of non-Markovianity (see
Appendix B for details of analytical computation of LQU). Figure 8 compares the LQU and IP, which
are the measures of non-classical correlations of state (26), with the QFIs. This figure clearly illus-
trates that the three quantities harmonically exhibit the same qualitative behaviour. When the evolution
begins, the QFIs and hence precision of estimations decrease, leading to a loss of information about
the encoded initial parameters. It originates from decrease of quantum correlations, quantified by IP
and LQU, between the qubits which play an important role in protecting the encoded information in
the process of estimation. Later on, all quantities increase, and consequently their time derivatives are

positive on this interval, i.e.,
d

dt
IP > 0,

d

dt
LQU > 0, and

d

dt
QFI > 0: this is the time interval when

the non-Markovian behaviour emerges, the system remembers past events, and coherence is restored;

hence the time derivatives
d

dt
IP and

d

dt
LQU are positive over the non-Markovianity period, leading to

introduce the LQU and the IP of the evolved state of the system as witnesses of non-Markovianity in
the presence of spin environment.

6. Multiparameter estimation

6.1. QFIM and QCRB

(a) (b)

Figure 9. (a) Time dependence of QCRBs for the first model with p = 0.3, γ0 = 0.01 and r = 0.4.
(b) The same quantities versus time for the second model with N = 5, p = 0.1, r = 0.9, h = 0.1 and
λ = 0.2.
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First, we should obtain SLDs Lp and Lr. After writing block diagonal state (21) or (26) in the form
ρ =

⊕n
i=1 ρi, where

⊕

denotes the direct sum, it is clear that the SLD operator may be written as

Lλj
=
⊕n

i=1 L
i
λj

, where Li
λj

represents the corresponding SLD operator with respect to parameter λj
for ρi. It has been shown that the SLD operator for the ith block is given by [14]

Li
λj

=
1

µi

[

∂λj
ρi + ξiρ

−1
i − ∂λj

µi

]

, (44)

where ξi = 2µi∂λj
µi − ∂xPi/4 in which µi = Trρi/2 and Pi = Trρ2i . Note that ξi vanishes if

detρi = 0.
Following this method, we can construct the SLDs and obtain the QFIM. These results are presented

in Appendix A. In both models, using Eqs. (8) and (A7), it is seen that the variances of the simultaneous
estimations of parameters are given by

δps ≥ (F−1)pp =
Frr

FppFrr − Fpr

2 , (45)

δrs ≥ (F−1)rr =
Fpp

FppFrr − Fpr

2 . (46)

In our models, it can be proved that [Lr, Lp] = 0, hence these QCRBs can be achieved locally, i.e., a
common measurement optimal from the point of view of extracting information on both parameters r
and p simultaneously, is realizable. Moreover, we know that the corresponding uncertainty bounds for
independent estimations of the parameters are

δpi ≥
1

Fpp
≡ 1

Fi(p)
, (47)

δri ≥
1

Frr
≡ 1

Fi(r)
. (48)

Because in both models the bounds are achievable, we plot the uncertainties for simultaneous es-
timations, δpmin

s = (F−1)pp as well as δrmin
s = (F−1)rr and compare them with the bounds for

independent estimation cases, δpmin
i =

1

Fi(p)
as well as δpmin

i =
1

Fi(r)
. The scaling behaviour of

these QCRBs as a function of time for the first and second model is plotted in Figs. 9(a) and 9(b), re-
spectively. We see that in the presence of bosonic or spin environment δpi ≤ δps and δri ≤ δrs, hence
the independent estimation of each parameter may lead to more accurate results than the simultaneous
estimation. Interestingly, as seen in Fig. 9(b), even if the parameters are estimated simultaneously, the
oscillations of QCRBs are synchronous with those of the independent estimations.

6.2. Role of coherence and purity in multiparameter estimation

Introducing the intuitive l1-norm measure of quantum coherence [27], which quantifies the coherence
in the reference basis through the off-diagonal elements of density matrix, Cl1 (ρ) =

∑

i,j

i6=j
|ρij |, we

obtain the following expression for quantum coherence of the evolved state of the system:

Cl1 (ρ( t)) = 2r
√

p(1− p)|g|. (49)

Moreover, the evolved state purity P (ρ) = Tr(ρ2), a particular measure of the quantum state noisiness,
is given by

P (ρ(t)) = −2 g2r2p (p− 1) +
1

4

(

8 p2 − 8 p+ 3
)

r2 +
1

4
(50)

where as before g stands for Γ and Q, discussing the first and second model, respectively. While the
purity of a pure state is equal to one, the purity of a mixed one is strictly less than 1. Besides, the
minimum value of the purity is bounded by the inverse of the dimension of the system Hilbert space.
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(a) (b)

Figure 10. (a) Time dependence of the coherence, purity and total variance for the second model with
N = 50, p = 0.1, r = 0.9, h = 0.1 and λ = 0.2. (b) The same quantities versus λ for N = 20, p =
0.1, r = 0.9, h = 0.1 and t = 10.

We investigate the relationship among coherence as well as purity of the quantum state and lower
bound on the total variance of all the parameters that should be estimated, i.e.,

δmin = Tr(F−1) =
Frr + Fpp

FppFrr − Fpr

2 . (51)

Figure 10(a) shows that these quantities synchronously oscillate with time such that at instants when
purity and coherence of the reduced density matrix are constant, the total variance does not change with
time. With increase (decrease) in coherence or purity, the total variance is started to decrease (increase)
simultaneously in the sense that the minimum values of the total variance are obtained when the co-
herence and purity are maximized. Therefore, we expect that the optimized simultaneous estimation
of the initial parameters occurs at the instants when the quantum state coherence is maximized and
the purity tends toward one, equivalent to pure quantum state. In other words, coherence and purity
of the evolved state of the probes are two key elements for realizing optimum multiparameter estima-
tion. Another aspect of these close relationship is shown in Fig. 10(b) illustrated the variation of those
quantities versus coupling coefficient λ. We see that all those quantities exhibit growing subordinate
maxima appearing between principal maxima.

7. Summary and conclusions

To summarize, we investigated the independent and simultaneous parameter estimation problem for
two interacting two-level systems, both coupled to external bosonic and spin environments. We found
that the entanglement parameter plays the role of a quantum key for turning off the decoherence ef-
fects in the process of estimating the mixedness parameter. Besides, one can freeze the evolution of
the QFI, corresponding to estimation of the entanglement parameter, and protect it against the deco-
herece by using a pure initial state. On the other hand, the quantum correlations measured by the IP,
are a sufficient resource to guarantee an upper bound on the smallest possible variance of the initial
parameter estimation. It was also found while the memory effects are not appeared in the presence of
bosonic environment, the dynamics of the system in the presence spin environment is non-Markovian.
We unveiled the evolved state IP and LQU and fidelity as new witnesses of non-Markovianity, that can
be used to detect the backflow of information from the spin environment to the system. Besides, we
computed analytically the two qubit QFIM for multiparameter estimation and investigated the corre-
sponding QCRBs in both single and multiparameter estimations. In particular, the relationships among
quantum coherence, purity and multiprameter estimation were discussed.
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Appendix A. SLD and QFIM elements

Using Eq. (44), we obtain the following expressions for the SLDs:

Lp =















r
2 e+r

(

(g2−1)(2 p−1)r(pr+e)

e2+er+(g2−1)(p−1)pr2 − 2

)

0 0 − g e(2 p−1)r(e+r)e−itΩ√
−(p−1)p(2 e+r)(e2+er+(g2−1)(p−1)pr2)

0 0 0 0
0 0 0 0

− g e(2 p−1)r(e+r)eitΩ√
−(p−1)p(2 e+r)(e2+er+(g2−1)(p−1)pr2)

0 0 2
2 e+r

(

(g2−1)(2 p−1)r2(−pr+e+r)

2 e2+2 er+2 (g2−1)(p−1)pr2 + r

)















,

(A1)

Lr =













(16 g2p2−16 g2p−16 p2+16 p−3)r−4 p+3

1+(16 g2p2−16 g2p−16 p2+16 p−3)r2+2 r 0 0
4g
√

−(p−1)p e−itΩ

1+(16 g2p2−16 g2p−16 p2+16 p−3)r2+2 r

0 0 0 0
0 0 0 0

4g
√

−(p−1)p eitΩ

1+(16 g2p2−16 g2p−16 p2+16 p−3)r2+2 r 0 0
(16 g2p2−16 g2p−16 p2+16 p−3)r+4 p−1

1+(16 g2p2−16 g2p−16 p2+16 p−3)r2+2 r













,

(A2)
where Ω = Ω1 + Ω2 and g stands for Γ and Q in the presence of bosonic and spin environment,
respectively. Moreover, we find that the elements of the QFIM

F =

(

Fpp Fpr

Frp Frr

)

, (A3)

corresponding to simultaneous estimation of p and r, are given by:

Fpr = Frp =
−4
(

g2 − 1
)

(2 p− 1) r

r

(

r

[

16 (g2 − 1) (p− 1) p− 3

]

+ 2

)

+ 1

, (A4)

Frr ≡ Fi(r), (A5)

Fpp ≡ Fi(p). (A6)

Besides, the inverse matrix of the QFIM is given by:

F−1 =





Frr

FppFrr−Fpr
2 − Fpr

FppFrr−Fpr
2

− Frp

FppFrr−Fpr
2

Fpp

FppFrr−Fpr
2



 . (A7)

Appendix B. Computation of LQU

Considering a bipartite quantum system prepared in the state ρ = ρAB , we suppose thatOΛ ≡ OΛ
A⊗IB

denotes a local observable, in which OΛ
A represents a Hermitian operator on A with non-degenerate

spectrum Λ. The LQU with respect to subsystem A is defined as follows [60]

LQUΛ
A = min

OΛ
I(ρ,OΛ). (B1)

where I(ρ,OΛ) = −1

2
Tr{[√ρ,OΛ]2} denotes the skew information. Moreover, the minimization is

performed over all local observables of A with non-degenerate spectrum Λ.
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However, for a qubit-qudit system, the choice of the spectrum Λ does not affect the quantification
of non-classical correlations, therefore we can drop the Λ superscript from here onwards. Besides, for
qubit-qudit systems,it is possible to write the LQU in the following form:

LQUA = 1− λmax(WAB), (B2)

in which λmax(WAB) represents the maximum eigenvalue of the 3 × 3 symmetric matrix W with
elements given by:

(WAB)ij = Tr[
√
ρAB(σiA ⊗ IB)

√
ρAB(σjA ⊗ IB)], (B3)

where i, j label the Pauli matrices.
Using above prescription, we can obtain the LQU for quantum state (26):

LQU(ρ2(t)) = 1− max(W1,W2), (B4)

where

W1 =
√
2e

(
√

2 e+ r
√

1− 4 (Γ2 − 1) (p− 1) p+ r +

√

2 e− r
√

1− 4 (Γ2 − 1) (p− 1) p+ r

)

,

(B5)
and

W2 = −
4 (p− 1) p

(

r − 2 Γ2
√

e2 + er + (Γ2 − 1) (p− 1) pr2
)

− 8
(

Γ2 − 2
)

e (p− 1) p+ 4 e+ r

4 (Γ2 − 1) (p− 1) p− 1
.

(B6)
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