Skip to main content
Log in

Multicharacters remote rotation sharing with five-particle cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Fusing the ideas of hierarchical quantum state sharing and quantum operation sharing, a novel protocol for quantum communication having substantial applications in the future quantum network is designed and analyzed. Concretely, we put forward a five-party quantum rotation operation sharing scheme with the aid of shared five-qubit cluster state and local operation as well as classical communication. The five features in the presented scheme are exposed, and comparing our scenario with existing schemes, we find that some of these important features are not available in existing protocols. Furthermore, we confirm our scheme security via a detailed analysis and reveal the experimental feasibility of the scheme with the current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63(1), 014302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  4. Xu, G., Chen, X.B., Dou, Z., et al.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18, 267 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, X.B., Sun, Y.R., Xu, G., et al.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16, 244 (2017)

    Article  ADS  MATH  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hayashi, M., Iwama, K., Nishimura, H., et al.: Quantum network coding. In: Proceedings of the 24th Annual Conference on Theoretical Aspects of Computer Science, pp. 610–621. Springer, Berlin (2007)

  8. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication-the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, J., Chen, X.B., Sun, X.M., et al.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China Inf. Sci. 59, 042301 (2016)

    Article  Google Scholar 

  10. Chen, X.B., Wang, Y.L., Xu, G., et al.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634–13642 (2019)

    Article  Google Scholar 

  11. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  12. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China Phys. Mech. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  13. Xu, G., Xiao, K., Li, Z.P., et al.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC Comput. Mater. Contin. 58(3), 809–827 (2019)

    Google Scholar 

  14. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    Article  ADS  Google Scholar 

  15. Peng, J.Y., Mo, Z.W.: Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels. Chin. Phys. B 5, 160–167 (2013)

    Google Scholar 

  16. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Peng, J.Y., Luo, M.X., Mo, Z.W.: Quantum tasks with non-maximally quantum channels via positive operator-valued measurement. Int. J. Theor. Phys. 52(1), 253–265 (2013)

    Article  MATH  Google Scholar 

  18. Chen, X.B., Wen, Q.Y., Sun, Z.X., et al.: Deterministic and exact entanglement teleportation via the W state. Chin. Phys. B 19(1), 41–45 (2010)

    Google Scholar 

  19. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55(5), 2481–2489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, X.W., Yang, G.J., Su, Y.H., et al.: Simple schemes for quantum information processing with W-type entanglement. Quantum Inf. Process. 8(5), 431–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, J.Y., Mo, Z.W.: Quantum sharing an unknown multi-particle state via POVM. Int. J. Theor. Phys. 52(2), 620–633 (2013)

    Article  MATH  Google Scholar 

  22. Zhao, Z., Chen, Y.A., Zhang, A.N., et al.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)

    Article  ADS  Google Scholar 

  23. Chen, X.B., Tang, X., Xu, G., et al.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process 17, 225 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Tavakoli, A., Herbauts, I., Zukowski, M., et al.: Secret sharing with a single \(d\)-level quantum system. Phys. Rev. A 92(R), 030302 (2015)

    Article  ADS  Google Scholar 

  25. Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  26. Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B At. Mol. Opt. Phys. 44(3), 035505 (2011)

    Article  ADS  Google Scholar 

  27. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via non-maximally entangled \(|\chi \rangle \) state. Chin. Phys. B 23(1), 010304 (2014)

    Article  ADS  Google Scholar 

  28. Yang, Y.G., Wen, Q.Y.: Circular threshold quantum secret sharing. Chin. Phys. B 17(2), 419–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. Peng, J.Y., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via non-maximally entangled four-qubit cluster state. Int. J. Quantum Inf. 11(01), 1350004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  31. Ma, X.S., Herbst, T., Scheidl, T., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  ADS  Google Scholar 

  32. Wiesner, S.: Conjugate coding. ACM Sigact News 15(1), 78–88 (1983)

    Article  MATH  Google Scholar 

  33. Ben-Or, M., Crépeau, C., Gottesman, D., et al.: Secure multiparty quantum computation with (only) a strict honest majority. In: IEEE Symposium on Foundations of Computer Science, pp 249–260 (2006)

  34. Hoban, M.J., Campbell, E.T., Loukopoulos, K., et al.: Non-adaptive measurement-based quantum computation and multi-party Bell inequalities. New J. Phys. 13(2), 023014 (2011)

    Article  ADS  Google Scholar 

  35. Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  36. Zheng, Y.Z., Ye, P., Guo, G.C.: Probabilistic implementation of non-local CNOT operation and entanglement purification. Chin. Phys. Lett. 21(1), 9–11 (2004)

    Article  ADS  Google Scholar 

  37. Yao, C.M.: Quantum remote control of unitary operations on a qubit of pure entangled states. Chin. Phys. Lett. 23(3), 545–547 (2006)

    Article  ADS  Google Scholar 

  38. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Efficient implementation of controlled rotations by using entanglement. Phys. Rev. A 73(3), 032337 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  39. Fan, Q.B., Liu, D.D.: Controlled remote implementation of partially unknown quantum operation. Sci. China Ser. G Phys. Mech. Astron. 51(11), 1661–1667 (2008)

    Article  ADS  Google Scholar 

  40. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75(6), 062323 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhao, N.B., Wang, A.M.: Local implementation of nonlocal operations with block forms. Phys. Rev. A 78(1), 014305 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44(16), 165508 (2011)

    Article  ADS  Google Scholar 

  43. Ye, B.L., Liu, Y.M., Liu, X.S., et al.: Remotely sharing a single-qubit operation with a five-qubit Genuine state. Chin. Phys. Lett. 30(2), 020301 (2013)

    Article  ADS  Google Scholar 

  44. Peng, J.Y.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15(6), 2465–2473 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Liu, D.C., Liu, Y.M., Xie, C.M., et al.: Shared quantum control via sharing operation on remote single qubit. Quantum Inf. Process. 12(11), 3527–3542 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Xie, C., Liu, Y., Xing, H., et al.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17(2), 841–851 (2015)

    Article  ADS  Google Scholar 

  47. Ji, Q., Liu, Y., Xie, C., et al.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13(8), 1659–1676 (2014)

    Article  ADS  MATH  Google Scholar 

  48. Xing, H., Liu, Y., Xie, C., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13(7), 1553–1562 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Duan, Y.J., Zha, X.W.: Remotely sharing a sing-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54(3), 877–883 (2015)

    Article  MATH  Google Scholar 

  50. Peng, J.Y.: Tripartite operation sharing with six-particle maximally entangled state. Quantum Inf. Process. 14(11), 4255–4262 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ji, Q.B., Liu, Y.M., Yin, X.F., et al.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12(7), 2453–2464 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Wang, S.F., Liu, Y.M., Chen, J.L., et al.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12(7), 2497–2507 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  54. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  55. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93(4), 040503 (2004)

    Article  ADS  Google Scholar 

  56. Zou, X.B., Mathis, W.: Generating a four-photon polarization-entangled cluster state. Phys. Rev. A 71(3), 032308 (2005)

    Article  ADS  Google Scholar 

  57. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  58. Yang, W.X., Zhan, Z.M., Li, J.H.: Efficient scheme for multipartite entanglement and quantum information processing with trapped ions. Phys. Rev. A 72(6), 062108 (2005)

    Article  ADS  Google Scholar 

  59. Zheng, S.B.: Generation of cluster states in ion-trap systems. Phys. Rev. A 73(6), 065802 (2006)

    Article  ADS  Google Scholar 

  60. Dong, P., Xue, Z.Y., Yang, M., et al.: Generation of cluster states. Phys. Rev. A 73(3), 033818 (2006)

    Article  ADS  Google Scholar 

  61. Zhou, Y.L., Jia, Y.L., Yi, H.D., et al.: Generation of cluster states in cavity QED. Chin. Phys. Lett. 24(12), 3304 (2007)

    Article  ADS  Google Scholar 

  62. Shao, X.Q., Zhang, S.: One-step generation of cluster states assisted by a strong driving classical field in cavity quantum electrodynamics. Chin. Phys. Lett. 25(9), 3132 (2008)

    Article  ADS  Google Scholar 

  63. Zhang, X.L., Feng, M., Gao, K.L.: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73(1), 014301 (2006)

    Article  ADS  Google Scholar 

  64. Borhani, M., Loss, D.: Cluster states from Heisenberg interactions. Phys. Rev. A 71, 034308 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95(16), 160501 (2005)

    Article  ADS  Google Scholar 

  66. Diao, D.S., Zhang, Y.S., Zhou, X.F., et al.: Efficient Construction of High-Dimensional Cluster State. Chin. Phys. Lett. 25(10), 3555–3557 (2008)

    Article  ADS  Google Scholar 

  67. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15(2), 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Wang, M.Y., Yan, F.L.: Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities. Quantum Inf. Process. 15(8), 3383–3392 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Zhang, K.J., Zhang, L., Song, T.T., et al.: A potential application in quantum networks—deterministic quantum operation sharing schemes with Bell states. Sci. China Phys. Mech. Astron. 59, 660302 (2016)

    Article  Google Scholar 

  70. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92(4), 042314 (2015)

    Article  ADS  Google Scholar 

  71. Zhou, L., Sheng, Y.B.: Feasible logic Bell-state analysis with linear optics. Sci. Rep. 6, 20901 (2016)

    Article  ADS  Google Scholar 

  72. Yang, C.P., Guo, G.C.: Disentanglement-free state of two pairs of two-level atoms. Phys. Rev. A 59(6), 4217–4222 (1999)

    Article  ADS  Google Scholar 

  73. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  74. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled states in cavity QED. Phys. Rev. A 59(4), 3044–3048 (1999)

    Article  ADS  Google Scholar 

  75. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62(2), 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  76. Riebe, M., Häffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429(6993), 734–737 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant No. 11071178, 11671284), Sichuan Provincial Natural Science Foundation of China (Grant No. 2017JY0197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiang Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY., Bai, Mq. & Mo, ZW. Multicharacters remote rotation sharing with five-particle cluster state. Quantum Inf Process 18, 339 (2019). https://doi.org/10.1007/s11128-019-2457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2457-5

Keywords

Navigation