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Abstract

Quantum optimal transportation seeks an operator which minimizes
the total cost of transporting a quantum state to another state, under
some constraints that should be satisfied during transportation. We for-
mulate this issue by extending the Monge-Kantorovich problem, which
is a classical optimal transportation theory, and present some applica-
tions. As examples, we address quantum walk, quantum automata and
quantum games from a viewpoint of optimal transportation. Moreover we
explicitly show the folk theorem of the prisoners’ dilemma, which claims
mutual cooperation can be an equilibrium of the repeated game. A series
of examples would show generic and practical advantages of the abstract
quantum optimal transportation theory.
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1 Introduction

Optimization is ubiquitous in various studies. In the modern physics literature,
a preferred physical quantum quantity can be obtained by optimizing (mini-
mizing or maximizing) a certain functional. There are various formulations and
definitions of optimization problems. In this article we address optimal trans-
portation, which is a problem to find a optimized way of transporting objects.
A rigorous mathematical definition of optimal transportation was given by Gas-
pard Monge in 1781 [1], and since then a number of authors worked on the
problem. From a viewpoint of physics, the conventional optimal transportation
theory basically is established in a classical manner. Therefore recent advances
in quantum technologies endow us with motivation to address a quantum ver-
sion of Monge’s problem, that is ”What is an operator which minimizes the total
cost of transporting a quantum state to another state?”. As shown later, this
problem can be formulated in various ways, depending on constraints imposed
on a transportation process. Optimal transportation seeks an optimized map
or operator of transportation by a non-perturbative way. This is in contrast to
modern physical method of deriving a classical saddle. However this conven-
tional method, in general, does not always become the best way to investigate
non-local physics. Hence work presented here has a potential advantage when
one considers an approach to global quantum physics. In this note, we present
some formulations of quantum optimal transportation and apply them to some
practical examples.

Attempt of solving not necessarily physical problems by a physical method
is increasingly gaining a lot of interest, due to recent progress in quantum com-
puters and quantum information technology. In fact, solving combinatorial op-
timization problem by a quantum physics way is known as quantum annealing
[2], which is partly implemented with superconducting qubits [3] and applied
to some NP-hard problems [4]. Indeed, we later show that some optimal trans-
portation problems can be implemented by a formalism of quantum annealing.
While a quantum annealing can solve only discrete problems, in this article, we
address problems with uncountable number of degrees of freedom. Though such
a computer that solves non-discrete problems have not existed so far, our formu-
lation of continuous quantum Monge problems can be useful when a machine
with an ultimate computational capability is realized. Indeed quantum field
theory is quantum mechanics with uncountable number of degrees of freedom
and nature implements quantum field theoretical algorithm by a yet-unknown
way.

This piece is orchestrated as follows. In section 2, we first give a brief re-
view on the Monge-Kantorovich optimal transportation theory and give various
quantum extensions. Then we address some examples based on our formal-
ism. Especially we describe a generic relation among quantum walk, quantum
automata and quantum games in a context of optimal transportation. Game
theory plays a fundamental role in a fairly large part of the modern economics.
Optimal transportation seeks an economically best way of transportation, hence
it will be natural to ask how it can be useful to game theory. In this work, we
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investigate a repeated quantum in terms of quantum optimal transportation
and show the folk theorem of the repeated quantum game, that is there exists
an equilibrium strategy of the repeated game. Various formulations of quantum
games are proposed by many authors, whereas less is known for repeated games.
Especially, this is the first work that investigate an infinitely repeated quantum
game and the folk theorem.

2 Quantum Optimal Transport

2.1 The Monge-Kantorovich Problem

M1 M2
T

We consider the Monge-Kantorovich problem [1, 5]. Let (X,µ), (Y, ν) be two
probability spaces. The original Monge problem is to find a bijective map T :
X → Y which minimizes the total cost

C(T ) =

∫
X

c(x, T (x))µ(dx), (1)

where c(x, T (x)) is some function on X. We write the transported distri-
bution as ν = T#µ. Monge’s problem is reformulated by Kantorovich in
such a way that one finds an optimal plan π = (1 × T )#µ, which satisfies
π(A, Y ) = µ(A), π(X,B) = ν(B) for all measurable sets A ⊂ X,B ⊂ Y and∫

X×Y
c(x, y)π(dxdy) =

∫
X

c(x, T (x))µ(dx). (2)

Hence the optimized transportation plan is π(dxdy) = µ(dx)δT (x)(dy). Let
(Tt(x))t∈[0,1] be associated optimal flow and (µt)t∈[0,1 be a family of curves
µt = Tt#µ. Then they naturally obey the equation of continuity

∂tµ+∇(vµ) = 0, (3)

where v(t, Tt(x)) = d
dtTt(x).

Now let us formulate the Monge-Kantorovich problem with a Hamiltonian
formalism. Before moving to quantum cases, we first consider the classical
problem. Let q : X×Y → [0, 1] be a function by which µ0(x)q(x, y) indicates the
amount transported to y from x. Then a solution of classical Monge-Kantrovich
problem is a ground state of the following Hamiltonian:

H =

∫
dxdyc(x, y)µ(x)q(x, y) +

∫
dx

(∫
dyµ(x)q(x, y)− µ(x)

)2

+

∫
dy

(∫
dxµ(x)q(x, y)− ν(y)

)2

.

(4)
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The first term is the cost of transportation, the second term is the penalty term
which requires for any x the sum of the transported amount from x to y is
equal to the sum of the amount µ(x) at x, and the third term implies that the
required amount ν(y) should be delivered to all y without loss. The problem is
solved by finding {q(x, y)}(x,y)∈X×Y that minimizes the Hamiltonian (4).

In practice, we can numerically simulate the problem in a discrete situation,
by finding the ground state of the classical Hamiltonian

H =
∑
x,y

c(x, y)µ(x)q(x, y) +
∑
x

(∑
y

µ(x)q(x, y)− µ(x)

)2

+
∑
y

(∑
x

µ(x)q(x, y)− ν(y)

)2

.

(5)

If q takes value in {0, 1}, this Hamiltonian (5) works for quantum annealing.
This corresponds to the Hamiltonian of the Hitchcock transportation problem.

2.2 Quantum Optimal Transport

In what follows we work on a Euclidean space X = Y = Rd. Occasionally we use
X or Y to emphasize a reference space and a target space. We may define the
quantum optimal transport by saying that find an operation T : H(X)→ H(Y )
which minimizes the total cost (or maximizes the total reward) when a given
wave function ψ0(x) = 〈x|ψ0〉 on M is transported to another ψ1(y) = 〈y|ψ1〉 on
N . So we formulate the problem by the following functional I[T ] of T defined
by

I[T ] =

∫
Y

dy

∣∣∣∣ ∫
X

dx
√
c(x, y) 〈y|T |x〉 〈x|ψ0〉

∣∣∣∣2
+

∫
Y

dyλ(y) (〈y|T |ψ0〉 − 〈y|ψ1〉) ,
(6)

where λ(y) is a Lagrange multiplier. We expand

T |x〉 =

∫
Y

dyT (x, y) |y〉 , (7)

where T (x, y) ∈ C should satisfy the unitarity condition∫
Y

dy|T (x, y)|2 = 1, ∀x ∈ X. (8)

Alternatively we can do the same business by introducing an operator ĈT which
acts on |x〉 as

ĈT |x〉 =

∫
Y

dy′
√
c(x, y′)T (x, y′) |y′〉 (9)
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and redefine the cost term with 〈y| ĈT |x〉, which is equivalent to
√
c(x, y) 〈y|T |x〉.

In fact the following formula holds.∥∥∥∥ ∫
X

dxĈT |x〉 〈x|ψ0〉
∥∥∥∥2

=

∫
Y

dy

∣∣∣∣ ∫
X

dx〈y|ĈT |x〉 〈x|ψ0〉
∣∣∣∣2. (10)

Proof is simple. The L.H.S. is∫
X

dxdx′
(
〈ψ0|x′〉 〈x′| ĈT

†)(
ĈT |x〉 〈x|ψ0〉

)
(11)

=

∫
X

dxdx′
∫
Y

dydy′ 〈ψ0|x′〉 〈x′| ĈT
†
|y′〉 〈y′| y〉 〈y| ĈT |x〉 〈x|ψ0〉 (12)

=

∫
Y

dy

∣∣∣∣ ∫
X

dx〈y|ĈT |x〉 〈x|ψ0〉
∣∣∣∣2 (13)

So we can interpret the state
∫
X
dxĈT |x〉 〈x|ψ0〉 as the quantum version of

Monge’s integral (1).
∥∥ ∫

X
dxĈT |x〉ψ0〉

∥∥2
gives amplitude of states after trans-

ported. In general, the cost
√
c(x, y) would make a transition process non-

unitary, as evolution of a particle interacting with a heat bath. We may restrict
to the case 0 ≤ |c(x, y)| ≤ 1 for all x ∈ X, y ∈ Y and consider the problem

supT̂ I[T̂ ], instead of inf T̂ I[T̂ ]. If c(x, y) = 1 everywhere, any T̂ which realizes

|ψ1〉 = T̂ |ψ0〉 can be a solution of the problem.
Our framework can address the classical Monge’s problem as well. Using the

formula ∥∥ĈT |x〉∥∥2
=

∫
Y

dydy′
√
c(x, y)c(x, y′)∗T (x, y)T (x, y′)∗ 〈y| y′〉

=

∫
Y

dyc(x, y)|T (x, y)|2,
(14)

we find that the functional of T̂

I1[T̂ ] =

∫
X

dx
∥∥ĈT |x〉 〈x|ψ0〉

∥∥2
(15)

=

∫
X

dx

∫
Y

dyc(x, y)|T (x, y)|2µ(x) (16)

describes the classical Monge’s optimal transportation. Here | 〈y| T̂ |x〉 |2 =
|T (x, y)|2 plays the role of q(x, y). Therefore the classical formulation of the
problem with a strict constraint on quantum states is

I[T̂ ] =

∫
Y

dy

∫
X

dx

∣∣∣∣√c(x, y) 〈y| T̂ |x〉 〈x|ψ0〉
∣∣∣∣2 (17)

+

∫
Y

dyλ1(y)
(
〈y| T̂ |ψ0〉 − 〈y|ψ1〉

)
, (18)

This functional can be also obtained when quantum interaction between two
different positions is lost, namely 〈x |ψ0〉 〈ψ0|x′〉 = | 〈x|ψ0〉|2δ(x − x′) holds in
the equation (12).
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Dynamical Approach Now let us consider a dynamical approach. Let (T̂t)t∈[0,1]

be a family of operators T̂t : H(X)→ H(X) defined by

T̂t |x〉 =

∫
X

dx′Tt(x, x
′) |x′〉 , (19)

where Tt(x, x
′) ∈ C satisfies

∫
X
dx′|Tt(x, x′)|2 = 1 for any x and t. With respect

to this T̂t we consider a family (ĈTt)t∈[0,1] of operators with cost

ĈTt |x〉 =

∫
X

dx′c(x, x′)Tt(x, x
′) |x′〉 . (20)

Suppose Tt(x, x
′) and c(x, x′) are smooth and finite with respect to any choice of

parameters. The problem is to find T̂ = (T̂t)t∈[0,1] which satisfies |ψ1〉 = T̂1 |ψ〉
and minimizes the total cost (or maximizes the total reward) for the quantum
case ∫ 1

0

dt

∥∥∥∥ ∫
X

dxĈTt |x〉 〈x|ψ0〉
∥∥∥∥2

(21)

and for the classical case∫ 1

0

dt

∫
X

dx
∥∥ĈTt |x〉 〈x|ψ0〉

∥∥2
. (22)

The classical formulation is obtained by another way. he information entropy
of a quantum system is expressed with the density operator ρ in such a way that

S(ρ) = −Tr(ρ log ρ). (23)

We define ρt(x) = Tt |x〉 〈x|T †t and the trace operation by

TrρTt (x) =

∫
Y

dy 〈y| ρt(x) |y〉 . (24)

By definition, TrρTt (x) =
∫
X
dy|Tt(x, y)|2, which is equal to 1 due to the unitar-

ity and have the conservation law

d

dt
TrρTt (x) = 0, ∀x ∈ X. (25)

Similarly, we define

ρCTt (x) = ĈTt |x〉 〈x| ĈTt
†
, (26)

whose trace TrρCTt (x) =
∫
Y
dy|
√
c(x, y)Tt(x, y)|2. Using this, we can write the

functional It[T ] in a simple form

It[T ] =

∫
X

ρCTt (x)µ(x)dx. (27)
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Moreover

ρψ0

t (x) = T̂t |x〉 〈x|ψ0〉〈ψ0 |x〉 〈x| T̂t
†

(28)

gives the total amount

Trρψ0

t (x) =

∫
Y

dy|Tt(x, y)|2µ(x) (29)

transported to y from x at t. The unitarity requires

Trρψt (x) = µ(x). (30)

We may write

µt(y) =

∫
X

dx|Tt(x, y)|2µ(x). (31)

Then at the end of transportation t = 1, the density precisely obeys µ1(y) =
|〈y|ψ1〉|2 = ν(y), which agrees with the constraint on 〈y|T1|ψ0〉 = 〈y|ψ〉. In this
way we can recover the classical picture of optimal transportation.

2.2.1 Variant 1

So far we have discussed the case where initial state is transformed into a
promised state. In practise, a quantum state is not a physical observable and
this constraint is too hard, thereby it would be better to work with relaxed
constraints. One of the most practical requirements is that quantum states
are efficiently transported so that the total cost is as small as possible and the
transported quantum state forms an expected probability distribution. The cor-
responding functional is defined with a Lagrange multiplier λ(y) in such a way
that

I[T̂ ] =

∫
dy

∣∣∣∣ ∫ dx
√
c(x, y)〈y|T̂ |x〉〈x|ψ0〉

∣∣∣∣2
+

∫
dyλ(y)(µ(y)− |〈y|T̂ |ψ0〉|2).

(32)

When two the observable µ(x) = |ψ0(x)|2 and ν(y) = |ψ1(y)|2 are given, find
a unitary operation which minimizes the cost of transporting wave function.
With respect to a wave function ψ : R→ C, we define its support supp(ψ) by

supp(ψ) = {x ∈ R : ψ(x) 6= 0}. (33)

Let ψa(x), ψb(x) be normalized wave functions on X. We write ψa±b(x) =
1√
2
(ψa(x) ± ψb(x)). Density distributions |ψa+b(x)|2 and |ψa−b(x)|2 become

equal to each other if they are not correlated supp(ψa+b) ∩ supp(ψa−b) = ∅.
While the original functional (6) requires a coincidence between a mapped state
and a target state, the functional (32) only demands a coincidence between a
mapped distribution and a target distribution. In this sense, the functional (32)
looks practical.
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Moreover it is also possible to work with the classical formulation of the
problem, by optimizing the functional

I[T̂ ] =

∫
dy

∫
dx

∣∣∣∣√c(x, y)〈y|T̂ |x〉〈x|ψ0〉
∣∣∣∣2

+

∫
dyλ(y)(ν(y)− |〈y|T̂ |ψ0〉|2)

(34)

This functional corresponds to solving the classical problem by a quantum
method. Generally it would be hard to find the optimized T̂ .

2.2.2 Variant 2

We consider quantum optimal transport T̂ so that the transported states be-
comes as close as possible to the desired state in along with minimizing the
total transportation cost. Instead of using a Lagrange multiplier, we consider fi-

delity F (ψ1, T̂ψ0) = |〈ψ1|T̂ |ψ0〉|2

‖T̂ |ψ0〉‖2
to measure the quantum distance D(ψ1, T̂ψ0) =

1− F (ψ1, T̂ψ0) between two states.

I[T̂ ] =

∫
Y

dy

∣∣∣∣ ∫
X

dxc(x, y) 〈y| T̂ |x〉 〈x|ψ0〉
∣∣∣∣2 +D(ψ1, T̂ψ0). (35)

2.2.3 Variant 3

Let |ψ0〉 ∈ H(X) and |ψ1〉 ∈ H(Y ) be given states. Let Ĉ : H(X) → H(Y ) be

a given cost operator, and T̂ : H(X)→ H(X) be a unitary operator. We define

the problem to find an optimal T̂ which maximize the following functional

I[T̂ ] = | 〈ψ1| ĈT̂ |ψ0〉 |2. (36)

This would be understood as the problem to find a operator which maximize
the probability amplitude of sending an initial state |ψ0〉 to a finial state |ψ1〉
with the cost Ĉ. By inserting

∫
X
|x〉 〈x| = 1 and

∫
Y
|y〉 〈y| = 1, the problem is

equivalent to

I[T̂ ] =

∣∣∣∣ ∫
Y

dy

∫
X

dx 〈ψ1| y〉 〈y| Ĉ |x〉 〈x| T̂ |ψ0〉
∣∣∣∣2. (37)

The cost 〈y| Ĉ |x〉 would correspond to
√
c(x, y) in the previous cases.

It is also possible to consider the cost to obtain a given final state |ψ1〉 ∈
H(Y ) by integrating all possible initial states |ψλ〉 ∈ H(X) (λ ∈ [0, 1]), and
satisfies ∫ 1

0

dλ |ψλ〉 〈ψλ| = 1. (38)

Here we assume that for any |ψ〉 ∈ H(X), there is some λ and |ψ〉 = |ψλ〉. The
cost to obtain |ψ1〉 ∈ H(Y ) is

I[T̂ ] =

∫ 1

0

dλ| 〈ψ1| ĈT̂ |ψλ〉 |2 (39)
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and the problem is to find T which minimizes it. Similarly we can evaluate the
cost to start with a given initial state |ψ0〉 ∈ H(X), by integrating out all final
states

I[T̂ ] =

∫ 1

0

dλ| 〈ψλ| ĈT̂ |ψ0〉 |2. (40)

2.2.4 Variant 4

Initiated by the functional (37), we formulate a functional by

I[T̂ ] =

∫
Y

dy

∣∣∣∣ ∫
X

dx 〈ψ1| y〉 〈y| Ĉ |x〉 〈x| T̂ |ψ0〉
∣∣∣∣2 (41)

and the classical case by

I[T̂ ] =

∫
Y

dy

∫
X

dx

∣∣∣∣ 〈ψ1| y〉 〈y| Ĉ |x〉 〈x| Û |ψ0〉
∣∣∣∣2. (42)

It requires a further investigation to unveil how they could be useful to optimal
transportation or to any physical system.

2.2.5 Variant 5

Another variation of this game is given by operator ĈT and maximizing the
reward

I[T̂ ] =
∣∣ 〈ψ1| ĈT |ψ0〉

∣∣2. (43)

By inserting
∫
Y
dy |y〉 〈y| = 1 and

∫
X
dx |x〉 〈x| = 1, the functional is

I[T̂ ] =

∣∣∣∣ ∫
Y

dy

∫
X

dx 〈ψ1| y〉 〈y| ĈT |x〉 〈x |ψ0〉
∣∣∣∣2

=

∣∣∣∣ ∫
Y

dy

∫
X

dx
√
c(x, y) 〈ψ1| y〉 〈y| T̂ |x〉 〈x |ψ0〉

∣∣∣∣2
(44)

The functional (43) is the transition amplitude of non-unitary scattering process.
By integrating out the degree of freedom about initial or final states, we obtain
the cost of ending with |ψ1〉 or starting with |ψ0〉, respectively.

A way to introduce dynamics into our model is to consider the following
functional of a family T̂ = {T̂t}t∈[0,1] of transportation operators:

I[T̂ ] =

∫ 1

0

dt
∣∣ 〈ψ1| ĈTt |ψ0〉

∣∣2. (45)

This describes the total cost of transporting |ψ0〉 to |ψ1〉.
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3 Applications of Quantum Optimal Transporta-
tion

3.1 Costly Quantum Walk

We consider discrete, one-dimensional and two-state quantum walk

|ψt(x)〉 = ψLt (x) |L〉+ ψRt (x) |R〉 ∈ C2, (46)

where |L〉 =
(

1
0

)
, |R〉 =

(
0
1

)
and ψt(x) satisfy

∑t
x=−t ‖ψt(x)‖2 = 1 for all t.

Time-evolution ψt+1(x) = Utψt(x) of a quantum walker is defined by a unitary
matrix Ut in such a way that

|ψt+1(x)〉 = UL,tψt(x+ 1) + UR,tψt(x− 1), (47)

where UR,t + UL,t = Ut is a two-by-two unitary matrix and ψt(x) is a state on
x at t. More explicitly, a state can be written as

ψRt+1(x) = atψ
L
t (x+ 1) + btψ

R
t (x+ 1) (48)

ψLt+1(x) = ctψ
L
t (x− 1) + dtψ

R
t (x− 1), (49)

where at, bt, ct, dt are components of a unitary matrix

Ut =

(
at bt
ct dt

)
, UtU

†
t = 1

UL,t =

(
at 0
ct 0

)
, UR,t =

(
0 bt
0 dt

) (50)

Suppose the cost of transporting from x to y is given by

c(x, y) = y2 − x2. (51)

Then the cost operator ĈUt acts on ψt(x) as

ĈUtψt(x) =

(
(2x+ 1)

(
atψ

L
t (x+ 1) + btψ

R
t (x+ 1)

)
(−2x+ 1)

(
ctψ

L
t (x− 1) + dtψ

R
t (x− 1)

)) (52)

So the problem is to find best choice of a family {Ut} that minimizes the total

cost
∑
t ‖ĈUtψt‖2 of transporting an initial state, say, ψ0(x) = δ(x) |R〉 to a

given target state or a target distribution.

3.2 Quantum Cellular Automata

A two-way quantum finite automaton (2QFA) [6] is defined by a 6-tuple

M = (Q,Σ, δ, q0, Qacc, Qrej), (53)

where Q, q0, Qacc, Qrej are a set of states, an initial state, a set of accepted states,
and a set of rejected states. δ : Q×Σ×Q×Z→ C gives a transition amplitude,
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namely δ(q, a, q′, D) = α means that, when the machine in a state q reads an
input letter a, the transition amplitude of the state into another q′ with a head
moving to D ∈ Z is α. We denote by |q, x〉 a sate of the machine with the head
at x ∈ Z. So for a given input a, a unitary time-evolution Ua of a given state
|q, x〉 is expressed as

Ua |q, x〉 =
∑

q′∈Q,D∈E(x)

δ(q, a(x), q′, D) |q′, x+D〉 , (54)

where E(x) ⊂ Z is a set of lattice vectors defining local neighborhoods for
the automaton and a(x) is a’s xth input letter. Let we define some sets by
Hacc = span{|q, x〉 : |q〉 ∈ Qacc}, Hrej = span{|q, x〉 : |q〉 ∈ Qrej} and Hnon =
span{|q, x〉 : |q〉 ∈ Q \ (Qacc ∪Qrej}. Then the whole Hilbert space is

H = Hacc ⊕Hrej ⊕Hnon. (55)

Let π? : H → H?, (? = acc,rej,non) be the natural projections. We denote
by |Ψ0〉 = |q0, 0〉 be an initial state. 2QFA works as follows. (1) Pick up
Ut = Ux and operate it to |Ψt〉. We write |Ψt+1〉 = Ux |Ψt〉. (2) Measure |Ψt+1〉
using projection operators, which makes the state shrink to 1

‖π?|Ψt+1〉‖π? |Ψt+1〉.
Further processing halts when either accept or reject is output. The dynamics
of a quantum cellular automaton can be described by quantum walk. A way of
introducing the cost into this study is to define it as the total steps needed for
a state to be accepted or rejected. Suppose dimension of Hacc ⊕Hrej is finite n
and let {ψi}i=1,··· ,n be an orthonormal basis of Hacc ⊕Hrej. Cost arises while
states in Hnon are observed. Therefore a way of defining the total cost that
arises until processing halts at certain t = τ ∈ Z is

τ [U ] =

τ∑
t=0

n∑
i=1

∆ (〈ψi|M |Ψt〉) , (56)

where ∆ : C 3 z 7→ ∆(z) ∈ {0, 1} is non-zero only at z = 0 and M is the
measurement operator. The cost (56) is actually a functional τ [U ] of U =
{Ut}t=0,··· ,τ therefore the problem is to find U which minimizes τ [U ]. The
complexity of this decision problem should be defined by min τ [U ].

3.3 Automata and Games

Automata and games are widely studied mostly from a viewpoint of computer
games. Conway’s life game is a well-known example. But here we like to explore
a relation with automata and game theory in economics. Especially we are
interested in repeated games. Let us first look at classical cases. We prepare
a set Σ = {0, 1} of input letters, a set Q = {C,D} of states, and a set Qacc ⊂
{C,D} of acceptable states. A classical automata consists of those sets, an
initial state q0 and a transition function δ : Q × Σ → Q, which corresponds to
a strategy of a game. Σ corresponds to a set of signals of opponent’s strategy.
Signals are updated every round by detecting new ones. As a simple example we
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C D
C (X,X) (X-Z,X+Y)
D (X+Y,X-Z) (X-Z+Y,X-Z+Y)

Table 1: Rewards for agents with respect to a pair of signals (ω1, ω2) ∈
{(C,C), (C,D), (D,C), (D,D)}. Each components consists of positive X,Y, Z
such that Y < Z.

C D

0 1, 0 

1 

Figure 1: Strategy profile/state transition diagram of the grim trigger strategy.
The bold arrow stands for an initial strategy/state.

consider a two-person prisoners’ dilemma (PD) with monitoring where payoff
for each agent is given in Table.1. Let q0 = C be an initial state of an agent (or
an automaton). For instance, the grim trigger strategy is expressed by

δ(C, 0) = C, δ(D, 0) = D

δ(C, 1) = D, δ(D, 1) = D
(57)

This means that an agent keeps a cooperative mindset while 0 is observed, but
never cooperates once 1 is observed. Interestingly, strategy profiles which game
theorists use are almost the same as state transition diagrams which computer
scientists use (Fig.1). Decision making is not a hard task for this automaton
and the complexity of this PD is 1 (we define the complexity by the minimal
time step needed for an automaton to make a decision ”accept” or ”reject”).
However there is yet another way to introduce a cost function, that is a payoff
function. Agents playing a game try to maximize their rewards (or minimize
economic loss) by choosing strategies based on opponents’ signals. In a single
round PD, mutual cooperation (C,C) is not a Nash equilibrium [7], however
there is a chance that the Pareto optimal strategy (C,C) can be an equilibrium
of the repeated game. A study on a repeated game is to find such a non-trivial
equilibrium solution that can be established in a long term relation of agents.
The automaton which decides if a mutual cooperation relation is maintained
or not has Qacc = {C}. From this viewpoint of the games/automata corre-
spondence, mixed strategy games can be seen as stochastic automata models.
Quantum games which we consider below is a simple version of quantum au-
tomata models (53), (54) without degrees of spacial freedom.
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C D
SC,t 1 0
SC,t |at|2 |bt|2

Table 2: Monitoring accuracy with respect to each strategy.

3.4 Repeated Quantum Games

We apply our model to repeated quantum games. Historically, quantum games
was proposed by [8, 9] and many relevant works have been made. In many cases,
however, only a single round quantum games are studied and less is known
for repeated quantum games. Some finite and small repeated quantum games
are proposed by [10, 11], whereas infinite cases have not been addressed yet.
Especially in terms of repeated games, a study on efficient strategy in a long-
term relation is critical. In this section, we formulate the problem and solve
it affirmatively. For simplicity we restrict ourselves to two-person prisoners’
dilemma where rewards to agents are given in Table. 1. A state of each agent is
spanned by two vectors |C〉 and |D〉, corresponding to Cooperate and Defect:

|C〉 =

(
1

0

)
, |D〉 =

(
0

1

)
. (58)

We are typically interested in a situation where strategic efficiency is achieved,
which we call the Folk theorem. So when agents play the quantum prisoners’
dilemma (QPD), we consider what gives incentive for agents to keep |C〉 ⊗ |C〉
in a long-term relation. In every round, each agent chooses a quantum strategy
independently. So a strategic state of an agent i = 1, 2 is generally defined by

|ψit〉 = Sit |0〉 , (59)

where Sit should satisfy ‖Sit |0〉 ‖2 = 1 for any t = 1, 2, · · · , called a quantum
strategy. Especially we define two special quantum strategies by

SC = |C〉 〈C| (60)

SC,t = at |C〉 〈C|+ bt |D〉 〈C| , (61)

where bt is some non-zero complex numbers and at, bt satisfy |at|2 + |bt|2 = 1.
The game proceeds as follows. In each round each gent choose a quantum strat-
egy, operates it to |0〉. Neither a quantum strategy nor a quantum state is a
physical observable, so agents measure quantum states and rewards are paid
to agents based on their classical signals ωi ∈ {C,D}. Information of their
outcomes can be either open or close to agents. Such games, where a strat-
egy cannot be directly observed, are often referred to as imperfect monitoring
games. If open (closed), the game looks similar to a game with public (private)
monitoring. Private monitoring is done by observing their opponents’ signals
and agents cannot know their own signals.
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The profit function of agent i is defined by

$i = (1− δ)
∞∑
t=1

δt
∑
ω1,ω2

$i(ω1, ω2)| 〈ω1, ω2|S1
t S

2
t |0, 0〉|2, (62)

where δ ∈ (0, 1) is a discount factor and $i(ω1, ω2) is i’s profit defined in the
Table 2 when a pair (ω1, ω2) of classical outputs is observed. $i(n) is a dis-
crete version of (45) without degree of freedom about final states. We call
Vi(S

1
t , S

2
t ) =

∑
ω1,ω2

$i(ω1, ω2)| 〈ω1, ω2|S1
t S

2
t |0, 0〉|2, which is a discrete version

of (40), the expected payoff of agent i. Regarding the QPD, each player tries
to maximise $i as much as possible, by choosing Ut = U1

t ⊗ U2
t .

Theorem 3.1 (Strategic Efficiency). There is such a quantum strategy for the
repeated QPD that is an equilibrium of the repeated game.

More explicitly we can show the following statement.

Proposition 3.2. The (Trigger, Trigger) strategy is an equilibrium of the re-
peated QPD.

Proof is simple. Let |ψ0〉 = |C,C〉 be an initial state of the RQPD. We write
|C〉 = a |C〉 + b |D〉 with a non-zero a ∈ C. Suppose agents play the (Trigger,
Trigger) strategy, that is they repeat cooperation SC until |D〉 is observed and,
once if |D〉 is observed, they play a not-cooperate strategy SC . To complete
the proof of the statement, it is suffice to show the (Trigger, Trigger) is an
equilibrium of the game. Let r > 0 be j’s probability of playing SC when j does
observe D. r = 1 is called the grim trigger strategy. Suppose both agents play
the trigger strategy and cooperative relation is maintained. Then the discounted
payoff $∗i of agent i is $∗i = Vi(SC , SC)+δ$∗i , which implies $∗i = X

1−δ . By playing
SC,t agent i can increase the expected payoff by Vi(SC,t, SC) − Vi(SC , SC) =

|bt|2Y , but looses the expected rewards in the future δr|bt|2$∗i . Hence agent i
has no incentive to change the trigger strategy if

$i(SC,t, SC)− $i(SC , SC) ≤ δr|bt|2$∗i . (63)

Solving this inequality, we obtain the inequality

δ ≥ Y

rX + Y
. (64)

Therefore (Trigger,Trigger) is an equilibrium strategy, since the R.H.S. is always
smaller than 1.

This result agrees with our naive intuition. Since players know there are no
welfare loss while playing SC , they would not be willing to change their strate-
gies unless r = 0 or X � Y . In addition, our observation in the proof above
shows that a quantum game is not quiet the same as a classical case. Though
quantum games looks similar to imperfect monitoring games with mix-strategy,
an imperfect monitoring process usually includes measurement errors and hence
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triggers welfare loss, which describes a loss of economic efficiency that can occur
when equilibrium is not achieved. Therefore (Trigger,Trigger) unlikely becomes
an equilibrium of a repetition of prisoners’ dilemma with imperfect monitoring
[12]. In contrast to such classical repeated games, our quantum game assures
that |C〉 is observed without any error while SC is played, therefore welfare loss
never occurs. Indeed, this fact makes a clear difference between the CPD and the
QPD. From a viewpoint of the conventional classical game theory, if measure-
ment of signals doe not unveil opponents’ strategies, which is called conditional
independence, ”Anti-folk Theorem” claims that only a single round Nash equi-
librium can be an equilibrium of the CPD with imperfect private monitoring
under conditional independence [13]. In contrast to this, we claim that QPD
always respect the Folk Theorem, though it also respects conditional indepen-
dence since agents’ quantum states are not entangled at all and measurement
does not unveil opponents’ strategies.
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