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Abstract

Quantum coherence is a useful resource that is consumed to accomplish several tasks that classical
devices are hard to fulfill. Especially, it is considered to be the origin of quantum speedup for many
computational algorithms. In this work, we interpret the computational time cost of boson sampling
with partially distinguishable photons from the perspective of coherence resource theory. With incoherent
operations that preserve the diagonal elements of quantum states up to permutation, which we name
permuted genuinely incoherent operation (pGIO), we present some evidence that the decrease of coherence
corresponds to a computationally less complex system of partially distinguishable boson sampling. Our
result shows that coherence is one of crucial resources for the computational time cost of boson sampling.
We expect our work presents an insight to understand the quantum complexity of the linear optical
network system.

Keywords: coherence resource theory, linear optics, boson sampling, partial distinguishability, permuted
genuinely incoherent operation

1 Introduction

Boson sampling (BS) [1] is a non-universal quantum computing device that can be easily realized with the
quantum linear optical network (LON). The BS process has some practical advantage over known quantum
algorithms using universal quantum computers, e.g., Shor algorithm. Indeed, it can be implemented with
a more feasible system (LON) than the algorithms based on universal quantum computers. In the original
BS setup proposed in Ref. [1], N single-photon states are initially prepared in M (� N) input modes. The
photons are injected into a LON that generates interference by unitary operations and then are detected
in M output modes. As a result, the transition amplitude between the product of single photon states is
hard to simulate with classical Turing machines. Therefore, BS seems to be a strong candidate to refute the
Extended Church-Turing Thesis (ECT), which conjectures that a Turing machine can efficiently simulate
any efficient computational process in the real world.

However, the BS process should fulfill several conditions for its computational hardness: low photon
density (M � N), complete photon indistinguishability, and randomness of unitary operations. Most of
all, the complete photon indistinguishability condition is hard to meet since photons usually carry some
internal degrees of freedom that makes them partially distinguishable in experimental realizations [2]. There
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have been many quantitative approaches to analyze the multiphoton interference phenomena of partial
distinguishable photons in LON [3–11], in which the distinguishability matrix is introduced to evaluate the
mutual distinguishability of each particle to others. The transition probability can be calculated in terms
of the partial distinguishable matrix, which is denoted by S in Ref. [11]. The authors of Ref. [12] sought
a range of partial distinguishability under which a classical simulation of BS becomes efficient. They first
considered a special form of S that has the form of the interpolation of the fully distinguishable and fully
indistinguishable cases with one continuous real parameter x (0 ≤ x ≤ 1). Then they applied the result
to the generalized S by imposing the efficient upper bound that also can be controlled by the parameter.
Actually, when the distinguishability is evaluted with just one parameter, we can assert that the amount of
x directly determines the degree of indistinguishability (DOI).

However, when S is required to be in a generalized form with more parameters, it is not that straight-
forward to determine DOI for the given matrix. For such a case, we need to find some scalar measures that
can compare DOI between different forms of S. Therefore, for a comprehensive discussion on the relation
between particle distinguishability and BS complexity, embracing that in Ref. [12], we first need to present
a generic and rigorous criterion of DOI for the generalized S. In this work, we approach this problem by
exploiting the quantum coherence resource theory, which was quantitatively formalized first in Ref. [13] (for
a general review for the theory, see Ref. [14]).

Quantum resource theories provide the quantitative criteria to compare the amount of resources in dif-
ferent quantum systems. They also equip one to analyze relations between the variation of resources and the
efficiency (speed or complexity) of some quantum tasks (see, e.g., Ref. [36]). Among them, the coherence
resource theory has incoherent states as free states (which possess no quantum feature) and incoherence op-
erations as free operations (which decrease the quantum feature of given states when applied to the states).
Our idea is to treat the amount of particle distinguishability for S as quantum coherence. On the other hand,
since S should remain in the form of a Gram matrix with all diagonal elements 1, we need a very restricted
set of incoherent operations to apply the coherence resource theory to our current system. We name such a
class the permuted genuinely incoherent operation (pGIO). This is a slightly extended set of operations from
the genuinely coherent operation (GIO) [15], by adding permutations. An intriguing property of pGIO is
that it is the intersection of the strictly incoherent operation (SIO) set [16] and the fully incoherent operation
(FIO) set [15].

The main focus of this work is to identify the behavior of transition probability of partially indistinguish-
able photons under a pGIO. We expect that when a pGIO is applied to a distinguishability matrix S, this
operation can be exploited to decrease the computational time cost of BS with partially distinguishable pho-
tons. Examples to support this conjecture are presented here. By introducing some permuted genuine (pG)
coherence monotones, we will analyze the behavior of the upper bound of the transition probability and the
runtime for exactly simulating the transition probability of a given BS system. By interpreting the particle
indistinguishability in the framework of coherence resource theory, one can state that quantum coherence
plays a role of resource for the passive scattering process of linear optics to become classically hard simulate.
We expect our present work would provide an insight into understanding the computational complexity of
the linear optical network system with quantum resource theories.

Our work is organized as follows: In Section 2, we briefly review the concept of partial distinguishability
matrix and its relation to the scattering process in LON. In Section 3, we define pGIO and discuss some
interesting properties of the operation class. In Section 4, we analyze the relation between pGIO and the
computational time cost of partially distinguishable BS. In Section 5, we present a summary and suggest
some possible future research.

2 Partial distinguishability in LON

We first introduce the concept of N ×N distinguishability matrix S and explain how it affects the transition
probability in multi-mode linear optical network systems [11]. We discuss the role of partial distinguishability
among photons in the original Fock state BS by Aaronson and Arkhipov [1], in which each input and output
mode contains no more than one photon (the complexity of the arbitrary photon distribution case with fully
indistinguishable photons is discussed in Ref. [17–19]). The relation between distinguishability matrix S and
density matrix coherence is also explained here.
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2.1 Partial distinguishability matrix S and the transition probability of LON

All the possible internal degrees of freedom (e.g., angular frequency, polarization) of the ith photon (1 ≤ i ≤
N) can be described in general with a normalized “internal” state |φi〉. Then the mutual distinguishability
of N photons is represented with the distinguishability matrix S with the elements

Sij = 〈φi|φj〉. (1)

We can directly see that S is a Gram matrix, and hence positive semidefinite (PSD). Since |φi〉 are non-
orthogonal normalized states, we have 0 ≤ |Sij | ≤ 1 and Sii = 1 for all i. When all internal states are
orthogonal to each other (all particles are completely distinguishable), we have S = I (Sij = δij). On the
other hand, when all internal states are proportional to each other (completely indistinguishable), we have
Sij = 1 for all i and j.

With a nontrivial S, the transition probability of Fock state BS is not expressed as an absolute square
of transition amplitude: the probability for a post-selected photon distribution is in general given by [11]

P (~n, ~m) =
∑
σ∈SN

(∏
i

Si,σi

)
perm(V � V ∗σ,I). (2)

Here V is the submatrix of the linear optical unitary operation U that actually generates mode interference.
More specifically, when the input and output photon distribution vectors are given by ~n = (n1, n2, · · · , nM )
and ~m = (m1,m2, · · · ,mM ) respectively, with N (=

∑
i ni =

∑
imi) photons and M modes, we have

V = U~n,~m (N×N submatrix of U that has ni (mi) of the ith row (column) of U). V ∗σ,I is the complex conjugate
of V with columns permuted along a specific permutation σ. The entrywise Schur product (or Hadamard
product) is denoted by �, and the summation of permutations is over all elements of the permutation group
SN . When particles are fully indistinguishable (Sij = 1 for all i and j), P (~n, ~m) = |perm(V )|2. When
particles are fully distinguishable (Sij = δij), P (~n, ~m) = perm(|V |2).

2.2 S and coherence

We can understand the relation between S and density matrices from the viewpoint of coherence, which is
indispensable for the connection of our system to the coherence resource theory. Coherence is a quantum
feature that indicates the degree of superposition among orthogonal quantum states. There exists a duality
between the quantum coherence and path indistinguishability of multi-slit (or multi-mode) interference
phenomena [20–22]. To see the relation in more detail, consider a quanton (quantum wave/particle dual
existence) interferes by a N dimensional multi-slit. A quanton state that passes through the ith slit is
denoted as |i〉 (1 ≤ i ≤ N). Then the most general quanton state is given by

|ψin〉 =

N∑
i=1

ci|i〉. (
∑
i

|ci|2 = 1) (3)

{|i〉}Ni=1 constructs an orthonormal basis set. To know which slit a quanton passes, we need a detecter that
is entangled to the quanton, which makes the total state including the quanton and detector as

|Ψ〉 =

N∑
i=1

ci|i〉 ⊗ |φi〉D (4)

|φi〉D is a state for a detector attatched to the ith slit, which is normalized but not necessarily orthogonal
according to its resolution. To acquire the path information of a quanton, we need to partial trace over the
detector state,

ρr = trD(|Ψ〉〈Ψ|) =
∑
i,j

cic
∗
j 〈φj |φi〉|i〉〈j|. (5)

Then one can show that the coherence of ρr determines the path distinguishability of the quanton [20–22].

Note that when |ψin〉 is maximally coherent, i.e., |ψin〉 =
∑N
i=1

1√
N
|i〉, ρr is proportional to the complex
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conjugate of S:

ρr
maximally coherent−−−−−−−−−−−−→ (ρr)

max =
1

N
S∗. (6)

Considering the complex conjugation comes from the definition of S, we can state that the partial distin-
guishability of bosons for given optical modes can be equivalently treated as the spatial coherence of the
bosons among the modes. This relation renders the application of coherence resource theory to the multi-
mode scattering of partial distinguishable particles. We define S̃ ≡ (ρr)

max = 1
N S
∗, which satisfies the

conditions for a density matrix.

3 Coherence resource theory and permuted genuinely incoherence
operation (pGIO)

Coherence resource theory [13, 16, 23, 24] recently has drawn extensive attention, and it turns out that the
coherence enhances the efficiency of various quantum computational tasks such as Deutsch-Jozsa algorithm
[25] and Grover algorithm [26,27]. Coherence depends on a specific set of computational bases, and we define
an incoherent state in d-dimensional Hibert state H as a diagonalized state in the computational basis set
{|i〉}di=1. The standard incoherent operations (IO) [13] corresponds to the following Kraus decomposition:

ΛI [ρ] =
∑
n

KnρK
†
n (7)

with
∑
nKnK

†
n = I and Knδ̂K

†
n/tr[Knδ̂K

†
n] = δ̂′ (δ, δ′ are both incoherent states). The Kaus operators are

explicitly expressed as Kn =
∑
i c
i
n|fni 〉〈i| (fn is a function that sends i to i′, not necessarily one-to-one).

On the other hand, other kinds of incoherent operations have been suggested according to various physical
motivations. Strictly incoherent operations (SIO) are those which cannot use the coherence in input states,
which has Kn =

∑
i c
i
n|σni 〉〈i| (σn is a permutation, hence one-to-one now) [16, 24]. Genuinely incoherent

operations (GIO) preserve all incoherent states, which has Kn =
∑
i c
i
n|i〉〈i| [15]. Fully incoherent operations

(FIO) have the most general form that are incoherent for all Kn, with Kn =
∑
i c
i
n|fi〉〈i|, i.e., Kn have the

same matrix form for all n [15] (a GIO is naturally an FIO) 1.

3.1 Permuted genuinely incoherent operations (pGIO)

The close relation between coherence and indistinguishability was first pointed out in Ref. [34] for the case
of one photon in two modes, but the application of coherence to the partial distinguishability case requires a
very different mathematical approach. Here we should analyze the behavior of the transition probablity Eq.
(2) when the coherence of S̃ changes according to some incoherence operations. However, since the diagonal
elements of S̃ should be preserved under any operation as 1/N for all i, we need a special kind of incoherent
operations that satisfy this restriction to analyze our physical system. Here we suggest permuted genuinely
incoherent operations (pGIO) as such a class of incoherence operations:

Definition 1. Permuted genuinely incoherent operations (pGIO) are those which preserve the diagonal
elements of given states within permutation.

It is direct to note that the set of pGIO includes that of GIO. The following inclusion relation also hold:

Theorem 1. The set of pGIO is the intersection of SIO and FIO (Figure 1).

Proof. The Kraus operators that satisfy both the conditions for SIO and FIO are expressed as Kn =∑
i c
i
n|σi〉〈i|, which can be decomposed as

Kn =
∑
i

cin|σi〉〈i| =
∑
i

|σi〉〈i|
∑
j

cjn|j〉〈j|. (8)

The final expression represents the definition of pGIO.
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IO

SIO FIO
pGIO

GIO

Figure 1: A Venn diagram for the relation of incoherent operations.

Theorem 2. Any state that has the form of S̃ can be obtained by taking pGIOs to a maximally coherent
state ρM (ρMij = ei(θi−θj)/N for all i and j).

Proof. From Theorem 2 of Ref. [15], a density matrix ρ =
∑
ij ρij |i〉〈j| transforms under pGIO to ρ′ =∑

ij(A � ρ)σiσj
|i〉〈j| where A is a Hermitian positive semidefinite matrix (therefore a Gram matrix) with

Aii = 1 for all i. It is straightforward that a matrix whose elements are the Hadamard product of two Gram
matrices is also a Gram matrix [35]. A Gram matrix hence transforms to another Gram matrix under a
pGIO. As a result, any state of the form S can be obtained with pGIOs from ρM .

Note that, by permutation, an unspeakable resource theory (GIO) becomes a speakable theory (pGIO)
2.

To see the relation between pGIO and partially distinguishable BS, it is convenient to find quantum
quantities that can evaluate the degree of coherence (permuted genuine coherence motonones). Following
the definitions for established incoherence operations including IO [13], the conditions that a permuted
genuine (pG) coherence monotone CpG must fulfill are as follows:

(pG1) Nonnegativity: CpG(ρ) ≥ 0, and CpG(ρ) = 0 if and only if ρ is incoherent. (pG2) Monotonicity:
CpG(Λ(ρ)) ≤ CpG(ρ) for any pGIO Λ. (pG3) Strong monotonicity: CpG does not increase under selective
operations for any Kaus operator set {Kn}, i.e,

∑
n qnCpG(ρ′n) ≤ CpG(ρ) with qn = Tr(KnρK

†
n) and ρ′n =

KnρK
†
n/qn. (pG4) Convexity: CpG(

∑
n pnρn) ≤

∑
n pnCpG(ρn).

For a quantity to be a pG coherence monotone, it must mininally satisfies (pG1) and (pG2).
To understand the role of pGIO in BS problems, we need to find monotones that also have straightforward

relations to the scattering process of BS. Here we suggest three such pG coherence monotones, N (ρ) (the
number of nonzero entries of ρ), perm(|ρ|) (permanent of the matrix whose elements are the absolute values
of the entries of ρ), and Ja(ρ) which is defined as follows:

Definition 2. With a scalar value Jσa(ρ) ≡ |
∏N
i=1 ρiσa

i
| where σa is a permutation that have (N-a)-fixed

points (in other words, σa is a permutation without changing (N − a) elements among N elements), we
define Ja(ρ) = max(Jσa(ρ)), i.e., the maximal value of Jσa(ρ) among all possible permutations with (N − a)
fixed points.

Then we have the following theorem.

Theorem 3. N (ρ), perm(|ρ|), and Ja(ρ) are pG coherence monotones that satisfy (pG1) and (pG2).

Proof. 1. N (ρ): (pG1) is trivially satisfied. Since all zero entries of the density matrix ρ only change their
places but not the amount, (pG2) is also true.
2. perm(|ρ|): (pG1) is again trivially satisfied. Under a pGIO, elements ρij of a density matrix ρ are
transformed to ρ′ij = (A � ρ)σiσj

, with |Aij | ≤ 1 for all i and j. Therefore, the inequality perm(|ρ′|) ≤
perm(|ρ|) always holds, and (pG2) is satisfied.
3. Ja(ρ): it is straightforward to see that Jσa(ρ) satisfies (pG1) and (pG2) using |Aij | ≤ 1. Then even if the
maximal permutation changes for max(Jσa(ρ)), Ja(ρ′) cannot be greater than Ja(ρ).

1Other crucial classes of incoherent operations are physical incohent operations (PIO) [28,29], dephasing-covariant incoherent
operations (DIO) [28,29], and translationally-invariant operations (TIO) [30–33].

2The speakable resources are independent of the physical encoding, i.e., all basis are equivalent, while the unspeakable
depend on the specific degrees of freedom. For a more detailed explanation, see Ref. [31, 36].
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One can ask about the actual physical implication of pGIO in the multimode scattering process of partially
distinguishable photons. It can be answered by considering that pGIO on S̃ is equivalent to the Hadamard
product of two Gram matrices. Therefore, for a given internal state |φi〉 that determines S, we can state
that a pGIO on S is to attach additional degrees of freedom, e.g., |ψi〉 so that a new internal state becomes
|φi〉 ⊗ |ψi〉. And the particles are likely to be more distinguishable with more degrees of freedom, and the
Gram matrix for the new initial state is the updated partial distinguishability matrix S.

Now we are ready to investigate the relation between pGIO and the computational cost of BS with
partially distinguishable photons.

4 pGIO in partially distinguishable boson sampling

In this section, we analyze the behavior of the partially distinguishable BS transition probability under pGIO.
When a pGIO Λ is applied to a given partially distinguishable matrix S, the new bosonic system becomes
more distinguishable (see the end of Sec. 3) and pG monotones decrease by definition (see pG1 to pG3) as
well. Hence, if the computational time cost of BS with partially distinguishable photons decreases as the pG
monotones decreases, the relation supports our surmise that the decrease of coherence in the system (which
is equivalent to the increase of distinguishability) depletes the computational complexity of BS. Thus one
can state that the distinguishability of photons is exploited to reduce the computational time cost of BS.

The time cost of classically simulating the BS scattering process can be understood from two aspects, i.e.,
approximate and exact simulations. We can summarize the results of this section in intuitive expressions as:

1. The classical approximation of the BS transition amplitude becomes more efficient as pGIOs are ap-
plied to S, i.e., as photons become more distinguishable (4.1).
2. The runtime for exactly simulating the BS transition amplitude becomes shorter as pGIOs are applied to
S (4.2).

The monotones we have introduced in Section 3 (N , perm(|ρ|) and Ja) are used to examine the relation
between transition probability and pGIO.

4.1 Approximating the transition probability and Ja

Various quantities have been suggested as the DOI for multi-boson scattering experiments [5, 9–11, 37, 38]
from different physical perspectives. Most of all, it is shown in Ref. [11] that perm(|S|) is directly related to
the upper bound of P (~n, ~m) (See Appendix A for a detailed analysis on the bound). On the other hand, one
can consider a tighter bound of P (~n, ~m) that is more easily saturated by phase control. The bound divides
the effect of indistinguishability from that of distinguishabilty and also reveals the monotonic effect of pGIO
on S manifestly:

P (~n, ~m) ≤
∑
σ∈SN

∣∣perm(V � V ∗σ,I)
∣∣Jσ (

≤ PI[perm(|S|)]
)

=perm(V � V ∗) +
∑

σ∈SN ,σ 6=I

∣∣perm(V � V ∗σ,I)
∣∣Jσ, (9)

where Jσ ≡ |
∏
i Si,σi |. Note that the first term in the last line of Eq. (9) corresponds to the classical contri-

bution (distinguishable scattering), and the second term to the nonclassical contribution (path interference
by indistinguishability).

Since Jσ is multiplied by each term that represents the effect of interference in the last term of Eq.
(9), with Theorem 3, we can see that the impact of interference in LON decreases under any pGIO. We
speculate that the reduction of interference results in a computationally less complex scattering process (see,
e.g., [39, 40]) 3. The following analysis supports this assumption.

3This can be compared to the coherence theory of wave-particle duality in multi-slit experiments [20–22,41]. These researches
showed that the interference phenomena (wave-like property) of a quanton through a multi-slit path inceases as the degree of
coherence increase, which is analogous to our case with multimode linear optical network.
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Using Sii = 1 for all i, Jσ can be ordered along the number of fixed points in permutations as Jσa with
a = 0, 2, · · · , N (see Definition 2). For example, when only two points i and j are permuted ((N-2)-points
are fixed), Jσ2 = |Sij |2, etc. Therefore, we can enumerate Eq. (9) as

P (~n, ~m) ≤
∑
a

∑
σa

Jσaperm(V � V ∗σa,I) ≡
∑
a

Za, (10)

Since the order of |Sij | (≤ 1) increases as a increases, Za with lower a makes a greater contribution to the
probablity on average [6, 11,12].

The condition for efficiently approximating the transition probability with the lowests k term of Za, i.e.,
Pk =

∑k≥N
a Za, is given in Ref. [12]. Since the scattering matrix is chosen totally randomly, the inequality

in Eq. (10) becomes an equality for real xij without loss of generality. The k-photon approximation for
Eq. (10) is obtained by setting max(Jσk)1/k ≡ (Jk)1/k ≡ x (x is real and 0 ≤ x ≤ 1). As x becomes
small, which is achieved by a pGIO, the approximation becomes efficient with lower k. Indeed, FIG. 4 of

Ref. [12] shows that the approximation level k decreases as x decreases. Since x = J
1/k
k is pG coherence

monotone by Theorem 3, we can state that the pGIO on an arbitary S decreases the computational time cost
of approximating the transition process.

4.2 Exact classical algorithm for simulating transition probability and N (S̃)

Here we show that the decrease of N (S̃) permits a less expensive algorithm to exactly simulate the transition
probability. The transition probability of the partial distinguishable BS (Eq. (2)) can be rewritten as

P (~n, ~m) =
∑

σ,ρ∈SN

N∏
j=1

(Vσj ,jV
∗
ρj ,jSρjσj

). (11)

Applying the inclusion-exclusion principle to this equation, we obtain an algorithm to compute the probability
[11] that is similar to Ryser’s formula [42]:

P (~n, ~m) =
∑
S,R⊆
{1,...,N}

(−1)|S|+|R|
N∏
j=1

∑
r∈R
s∈S

VsjV
∗
rjSrs, (12)

(|S| represents the number of elements for a given set S), or equivalently,

P (~n, ~m) =
∑

~x,~y∈{0,1}N
(−1)

∑N
i xi+

∑N
i yi

×
N∏
j=1

[ N∑
r,s=1

VsjxsV
∗
rjyrSrs

]
. (13)

The above identities directly result in the following feature for two extremal situations of S̃:

Theorem 4. The transition probability P (~n, ~m) is the same for all maximally coherent S̃, i.e, P (~n, ~m) is
equivalently hard to simulate for the cases. If S̃ is incoherent, P (~n, ~m) is approximated efficiently.

Proof. S̃ is maximally coherent if and only if S̃ = |ψ〉〈ψ| with |ψ〉 = 1√
N

∑
i e
iθi |i〉 [43], or Sij = ei(θi−θj).

Therefore, from the relation
∏
i Siσi

= exp[i
∑
i(θi − θσi

)] = 1 for all σ, we can see that P (~n, ~m) is the same

for all maximally coherent S. On the other hand, the only possible incoherent state of S̃ is when S̃ij = δij/N .
Then P (~n, ~m) becomes a permanent of the nonnegative matrix (the unitary condition of M moreover makes
M �M a doubly stochastic matrix), which is efficiently approximated [44].

For arbirarily distinguishable photons, the classical runtime T for the simulation with the algorithm Eq.
(13) is given by T = 22(N−1)N3. However, this runtime can decrease when some elements of S are zero, i.e.,
N (S̃) < N2. Indeed, the functional form of Eq. (13) shows that the runtime becomes

T = (22(N−1)N)N (S̃) (14)

7



Figure 2: Runtime of exactly simulating P (~n, ~m) along N (S̃) for N = 8. T has the maximal value 21483 =
8388608 when N (S̃) = 82. T decreases monotonically as N (S̃) decreases.

since the number of arithmetics in the bracket of Eq. (13) is N (S̃). This shows that the depletion of
coherence decreases the computational cost of the exact simulation (see Figure 2 for N = 8 example).

On the other hand, this pattern has a singular point when particles are completely indistinguishable,
which correspond to the case when S̃ is maximally coherent. Then the transition probability becomes
|perm(V )|2, the absolute square of the transition amplitude. For this case, the runtime is 2(N−1)N2 from
Ryser’s formula. This abrupt decrease of the computational cost is due to the symmetry of S̃ for the
maximally coherent case, which permits us find an algorithm with a shorter runtime. To sum up, the
classical runtime for the exact simulation is affected by two factors, the symmetry of S̃ (a classcal factor)
and coherence (a quantum factor). When the effect of the symmetry disappears, the depletion of coherence
decreases the computational time cost of the exact simulation.

Another approach to reduce the number of arithmetic operations is to break up the subsets S and R
defined in Eq. (12) so that the corresponding submatrices of S become zero. In other words, for some
S = {s1, . . . , sα} and R = {r1, . . . , rβ}, if Ssirj = 0 for all i and j, we do not need to include the summation
in the algorithm, which results in a shorter runtime, not significantly though. A specific example for N = 4
is given in Appendix B.

5 Conclusions

In this work, we showed that the partial distinguishability of photons in LON can be understood from
the framework of coherence resource theory. We introduced the concept of permuted genuinely incoherent
operation (pGIO) that transforms one partial distinguishability matrix S to another. By delineating the role
of three pG coherence monotones (N (S̃), perm(|S̃|) and Jσ) in partially distinguishable boson sampling, we
presented evidence of the assumption that the coherence of partial distinguishability affects the computational
time complexity of a partially distinguishable scattering process of linear optical network.

Our current work can develop in various directions. For example, N decreases the runtime for exact
simulation of transition probability with our current algorithm; however, the runtime is still an exponential
function of N . There might exist more efficient algorithms that exploit the coherence of partial distinguisha-
bility to reduce runtime. Also, the application of our analysis to the continuous BS system [45–49] would
provide more rigorous conditions for various types of BS to be computationally hard.
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A The upper bound of transition probability with perm(|S|)
A slight modification of Eq. (51) in Ref. [11] gives

P (~n, ~m) =
∣∣∣ ∑
σ∈SN

perm(V � V ∗σ,I)
(∏

i

Si,σi

)∣∣∣
≤ perm(V � V ∗)

∑
σ∈SN

∣∣∣∏
i

Si,σi

∣∣∣ ≡ PI[perm(|S|)]. (15)

where the inequality comes from the relation
∣∣perm(V � V ∗I,σ)

∣∣ ≤ perm(V � V ∗) ≡ PI for any permutation
σ. Using the monotonicity of perm(|S|) from Theorem 3, we can see that a pGIO on S decreases the upper
bound of the transition probability P (~n, ~m). The unitarity condition of V in Eq. (15) provides a more
rigorous upper bound condition for the equation. Indeed, since V � V ∗ is a unistochastic matrix (a doubly
stochastic matrix whose elements are the absolute squares of the elements of a unitary matrix), the upper
and lower bounds for PI = perm(V � V ∗) are given using the result in Ref. [50] by

F (V � V ∗) ≤ perm(V � V ∗) ≤ 2NF (V � V ∗), (16)

where F (V � V ∗) ≡
∏N
i,j=1(1− |Vij |2)1−|Vij |2 . Hence, Eq. (15) can be rewritten as

P (~n, ~m) ≤ 2NF (V � V ∗)[perm(|S|)]. (17)

B Alternative algorithm example

(N = 4) The runtime using Eq. (12) is (2643)/2 = 2048. However, when S13 = S24 = S34 = 0, the
summations with the following (R,S) become zero:

(R,S) =({1}, {3}), ({2}, {4}),
({3}, {4}), ({3}, {1, 4}), ({4}, {2, 3}), (18)

which contains 4, 4, 8, and 8 terms, respectively. Therefore, the resulting runtime decreases to 2024.
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