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Abstract Quantum games have gained much popularity in the last two decades.
Many of these quantum games are a redefinition of iconic classical games to fit
the quantum world, and they gain many different properties and solutions in
this different view. In this letter, we attempt to find a solution to an asymmet-
ric quantum game which still troubles quantum game researchers, the quan-
tum battle of the sexes. To achieve that, we perform an analysis using the
Eisert-Wilkens-Lewenstein protocol for this asymmetric game. The protocol
highlights two solutions for the game, which solve the dilemma and satisfy the
Pareto-optimal definition, unlike previous reports that rely on Nash equilib-
rium. We perform an experimental implementation using the NMR technique
in a two-qubit system. Our results eliminate dilemmas on the quantum bat-
tle of the sexes and provide us with arguments to elucidate that the Eisert-
Wilkens-Lewenstein protocol is not restricted to symmetric games when at the
quantum regime.

Keywords Quantum game · quantum strategy · symmetric and asymmetric
game · pareto-optimal · quantum circuit · Nuclear magnetic resonance

1 Introduction

Human decision making is a process in which an alternative is selected ratio-
nally or intuitively. Rational decisions can be studied formally and in game
theory are part of a player’s strategy. The strategy determines every action
that players may take with the goal of maximizing his chance to win or max-
imize their payoffs. From a collection of a few seemingly simple set of rules of
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payoff and possible strategy choices, many emblematic games were developed,
analyzed and studied such as the prisoner’s dilemma, the battle of the sexes,
coin tossing, rock-scissors-paper [1,2] and others [3].

At the end of the 90’s, the classical interpretation of those games started
their extension to the quantum world. In that sense, the Penny PQ flip over
[4], gambling [5] and prisoner’s dilemma [6] were the first games analyzed
in the quantum regime. From those cited, the most versatile problem corre-
sponds to the prisoner’s dilemma, a symmetrical game successfully studied
by the protocol proposed by Eisert-Wilkens-Lewenstein [6], which had its dis-
cussion extended to multiple players [7,8], concepts of non-locality [9,10,11],
entanglement [12], concepts of symmetric and asymmetric games [13], or in
the context of Bayesian games [14] and was verified experimentally by NMR
techniques using a cytosine sample [15] and by optical quantum circuits on
two and four-qubit systems [11,16,17] and using ion-trap setup on five-qubit
system [18].

Another critical contribution to quantum games is the discussion started
by Marinatto and Weber focused on the quantum of the battle of the sexes
[19]. Although Marinatto-Weber’s discussion brought out an interesting point
of view, their analysis restricts the choices of the players as pointed out by
Benjamin [20]. Numerous theoretical discussions attempted to show its poten-
tiality [21,22,23,24,25], highlighting the use of a general initial quantum state

[26], arguing the omission of a disentangling quantum gate Ĵ† to maintain the
quantum game in its highest correlated regime where the dilemma does not
exist [20,27], using the Harsanyi-Selten algorithm to accomplish an ultimate
solution [28] and playing asymmetric coordination games [29]. Out of these
previously cited, the most important is about the omission of a disentangling
quantum gate. Specifically, we draw attention to the last two-qubit gate of the
Eisert-Wilkens-Lewenstein protocol, the disentanglement operator Ĵ†, because
it highlights the distinction between the Marinatto-Weber and the Eisert-
Wilkens-Lewenstein protocols. This argument is underlined by Benjamin [20]

who points out that the second inverse gate Ĵ† ensures that the classical game
remains embedded within the quantum game [8], while Melo-Luna claims that
it belongs to the measurement procedure [11].

From the above arguments, in this paper, we present a theoretical analysis
and experimental verification of an asymmetrical game considering the appli-
cation of the Eisert-Wilkens-Lewenstein protocol [6]. In order to achieve this
task, we organize this paper as follows: in section 2 we introduce a simple,
accurate description of the classical version of the battle of the sexes game
and in section 3 we extend those concepts to its quantum version. In section 5
we analyse the theoretical data, applying fundamentals of game theory, math-
ematical definitions and experimental procedures. In section 6 we present our
conclusions. At the end of the manuscript, we show in appendix 4 an extended
experimental description and in appendix A an extra mathematical detail.
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2 Classical game

Two players, Alice and Bob, need to decide their entertainment for a Satur-
day night. Both have two options they can pick, and each one must choose
simultaneously without any communication between them. The possibilities
are either to go to the Opera (O) or to watch Television (T ). Alice loves the
Opera, but Bob would prefer to stay at home and watch television. However,
both of them want to stay together rather than going to their favored activity.
Thus, the dilemma arises. They want to maximize their happiness with their
choices, and the result of their decisions can be visualized on the bi-matrix of
payoffs on Tab 1. If both of them choose Television (Opera), Alice’s payoff is
β (α), and Bob’s payoff is α (β). If Alice chooses Opera (Television) and Bob
Television (Opera), then both of their payoffs is γ.

From the fundamentals of game theory [19,30], and for a two player game
(Alice and Bob), a pair of strategies (s?A, s

?
B) is defined as Nash equilibrium,

if for both payoff functions $A and $B the pair (s?A, s
?
B) satisfies the following

inequalities

$A (s?A, s
?
B) ≥ $A (sA, s

?
B) , (1)

$B (s?A, s
?
B) ≥ $B (s?A, sB) , (2)

where sA,B means the player’s choice from a set of options and s?A,B means the
most efficient player’s choice obeying the game rules that maximize their pay-
offs. From these equations and the payoffs table, we ascertain that Television-
Television and Opera-Opera satisfy the condition of Nash equilibrium [30],
although the payoffs for each player are different in both cases. This difference
is the main characteristic of an asymmetrical game.

Bob
T O

T (β, α) (γ, γ)
Alice

O (γ, γ) (α, β)

Table 1 Bi-matrix of payoffs for the battle of the sexes game at its classical regime [1,
2]. The first (second) entry in the parenthesis denotes Alice’s (Bob’s) payoffs. Parameters
values obey the relation α > β > γ.

3 Quantum game

Now, let us assume that the quantum battle of the sexes obeys the Eisert-
Wilkens-Lewenstein’s proposal [6] and follow Benjamin’s suggestion [20]. Math-
ematically, the two-player game is defined in a Hilbert space generated from the
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standard computational basis for a two-qubit system, {|OA, OB〉 , |TA, OB〉 , |OA, TB〉 , |TA, TB〉},
such that for a one qubit state we define the kets:

|O〉 ≡ |0〉 =

[
1
0

]
, |T 〉 ≡ |1〉 =

[
0
1

]
,

in which |O〉 encodes the classical Opera strategy, and |T 〉 encodes the classi-
cal Television strategy. Given the quantum mechanical nature of the system,
this encoding procedure generates many other possibilities through the prin-
ciple of superposition of quantum states. The quantum state superposition is
achieved performing unitary transformations, and they are mathematically de-
fined by operators. These operators depend on angular parameters which can
be mapped onto the concept of strategy in game theory context. In this sense,
we define the quantum operator that generates quantum states representing
strategies.

J Jstate

preparation

Judge

(     ,     )θ AA

Alice

Bob

Judge

r
Quantum

U φ 

(     ,     )θ BBU φ 

A

B

Fig. 1 (Color online) Two-player quantum circuit describing Eisert-Wilkens-Lewenstein
protocol [6]. The gray box represents the quantum state preparation |00〉, the first dashed

orange box represents the entangling quantum gate Ĵ (or the judge). Both dark green small

boxes represent Alice’s and Bob’s quantum operator strategies labeled by ÛA (θA, φA) and

ÛB (θB, φB), respectively. The second dashed orange box represents the unentangling quan-

tum gate Ĵ†, and finally a measurement operator for both players.

Quantum strategy operator.- The definition of the strategy operator in
quantum mechanics (see Complement CII on pag. 176 of Ref. [31] and also

Eq. (3) of Ref. [6]) is established by the unitary operator Û (θ, φ) for one
player (or one qubit) as follows:

Û (θ, φ) =

[
exp [iφ] cos θ2 sin θ

2

− sin θ
2 exp [−iφ] cos θ2

]
, (3)

with parameters 0 ≤ θ ≤ π and 0 ≤ φ ≤ π
2 . Opera and Television clas-

sical strategies have their quantum counterpart choosing {θ = 0;φ = 0} and
{θ = π;φ = 0}, respectively. In matrix notation, we have:

Ô ≡ Û (0, 0) =

[
1 0
0 1

]
T̂ ≡ Û (π, 0) =

[
0 1
−1 0

]
. (4)
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For this two-player game, Alice can choose the Opera or Television quantum
strategy operators defined by the following operators ÔA ≡ Ô ⊗ 1̂ or T̂A ≡
T̂ ⊗ 1̂, while Bob’s operators are ÔB ≡ 1̂ ⊗ Ô or T̂B ≡ 1̂ ⊗ T̂. In general,
for any quantum strategy operator in the two player representation, Alice’s
operators are denoted by ÛA (θA, φA) = Û (θA, φA)⊗ 1̂ where the Kronecker

product is applied between the single qubit operator Û (θ, φ) and the identity
operator 1̂. Analogously, Bob’s quantum strategy operators are denoted by
ÛB (θB, φB) = 1̂⊗ Û (θB, φB).

The Judge operator.- A two-qubit unitary, symmetric and invertible opera-
tor. The primary purpose of this gate is to entangle the initial quantum state,
which carries the information of choice for both players. The judge operator
is defined by:

Ĵ (λ) = exp

[
iλ

2
T̂⊗ T̂

]
, λ ∈

[
0,
π

2

]
, (5)

in which λ represents the level of entanglement, being λ = 0 the absence of
entanglement and λ = π

2 maximum entanglement.
We briefly describe the Eisert-Wilkens-Lewenstein protocol [6] to analyze

the quantum battle of the sexes, and Fig. 1 summarizes the algorithm. The pro-
tocol starts at the quantum state |OA, OB〉. Next, the entangled operator trans-

forms the initial quantum state to produce |ψ0〉 = Ĵ (λ) |OA, OB〉. Each player

acts locally performing their quantum strategy operators ÛA (θA, φA) ÛB (θB , φB) |ψ0〉.
Finally, we apply the disentangling operator Ĵ† (λ) providing the final quantum

state |ψf 〉 = Ĵ† (λ) ÛA (θA, φA) ÛB (θB , φB) |ψ0〉 at the end of the quantum
circuit. The study developed in this manuscript is performed in the highest
regime of entanglement, λ = π

2 . Therefore, the probability amplitudes of the
ket representing the final quantum state are given by Eq. (6):

|ψf 〉 =


cos θA2 cos θB2 cos (φA + φB)

cos θB2 sin θA
2 sinφB − cos θA2 sin θB

2 cosφA
cos θA2 sin θB

2 sinφA − cos θB2 sin θA
2 cosφB

sin θA
2 sin θB

2 + cos θA2 cos θB2 sin (φA + φB)

 (6)

To perform the analysis of the game, we compute the probability values
represented by PsA,sB = |〈sA, sB |ψf 〉|2, where sA,B ∈ {O, T} and then we
evaluate the payoff, similarly to equation 2 of reference [6], for both players (see
Eq.(19-22) of appendix A for an explicit representation of the probabilities).
Using the bi-matrix detailed in Tab. 1, we can achieve the expressions of the
payoff in terms of α, β and γ:

$A (θA,B, φA,B) = αPOO + γ (POT + PTO) + βPTT , (7)

$B (θA,B, φA,B) = βPOO + γ (POT + PTO) + αPTT . (8)

These expressions depend on four angular parameters, θA,B, φA,B. To give a
visual description of the game, with the values α = 5, β = 3 and γ = 1,
we make a contour plot in Fig. 2(a) and Fig. 2(b). The figures describe the
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Fig. 2 (Color online) Pay-
offs for the battle of the sexes
quantum game as a function
of the parameter domain
for the quantum strategy
operators. The parameter
domain is divided into two
parts: the first one satisfies
θA, θB ∈ [0, π] and φA,B = 0,
which corresponds to moving
from Television T̂A,B =

ÛA,B

(
θA,B = π, φA,B = 0

)
to Opera ÔA,B =

ÛA,B

(
θA,B = 0, φA,B = 0

)
strategy operator; the sec-
ond one satisfies θA,B = 0
and φA, φB ∈

[
0, π

2

]
, which

corresponds to moving
from the Opera ÔA,B =

ÛA,B

(
θA,B = 0, φA,B = 0

)
strategy to the Q̂A,B =

ÛA,B

(
θA,B = 0, φA,B = π

2

)
strategy operators, where
α = 5, β = 3 and γ = 1 obey-
ing the relation α > β > γ.
In Tab. 2 are resumed the
payoffs values related to the
most important quantum
strategy operators T̂A,B,

ÔA,B, Q̂A,B. (a) Contour
graph representing Alice’s
payoffs, $A. (b) Contour
graph representing Bob’s
payoffs, $B. The small black
circles in Fig. 2(a) and
Fig. 2(b) correspond to the
classical counterpart. (c)
Cross-section represented
by the red and blue dashed
line of Fig. 2(a) and Fig.
2(b), indicating the payoff
values of Alice and Bob,
when both use the same
quantum strategy operators.
Blue dots and squares rep-
resent theoretical prediction
and experimental results of
Alice’s payoffs, respectively.
Red dots and triangles rep-
resent theoretical prediction
and experimental results of
Bob’s payoffs, respectively.
This figure is a dimensionally
reduced representation of
the payoffs constrained to
a single plane. In Fig. 6 we
sketch a few other planes of
interest based on the general
description made in appendix
A.
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payoff values that Alice and Bob receive in response to their performed strat-
egy. The horizontal (vertical) axis of the plot corresponds to the quantum

strategy operators performed by Bob (Alice). Both axes start at T̂A,B =

ÛA,B (θA,B = π, φA,B = 0) (Television) then θA,B moves from π to 0 arriv-

ing at ÔA,B = ÛA,B (θA,B = 0, φA,B = 0) (Opera) (the dark orange region in
Fig. 2). Past this point on the axis, the parameter φA,B varies from 0 to π

2
while θA,B remains constant at zero, reaching the quantum strategy operator

Q̂A,B = ÛA,B

(
θA,B = 0, φA,B = π

2

)
(the light purple region in Fig. 2). In Fig.

2(c) we sketch the payoff of each player considering both are performing the
same quantum strategy operator . The blue (red) dots represent the theoretical
prediction for Alice’s (Bob’s) payoffs. Also, square (triangle) symbols represent
the experimental results of Alice’s (Bob’s) payoffs computed from experimen-
tal quantum states as detailed in Fig. 4 (we will present explanations about
the experimental setup in the next section).

Bob

T̂B ÔB ÛB

(
0, π

8

)
ÛB

(
0, 3π

8

)
Q̂B

T̂A (3, 5) (1, 1) (1, 1) (1, 1) (1, 1)

ÔA (1, 1) (5, 3) (4.7, 3.3) (3.3, 4.7) (3, 5)

Alice ÛA

(
0, π

8

)
(1, 1) (4.7, 3.3) (4, 4) (3, 5) (3.3, 4.7)

ÛA

(
0, 3π

8

)
(1, 1) (3.3, 4.7) (3, 5) (4, 4) (4.7, 3.3)

Q̂A (1, 1) (3, 5) (3.3, 4.7) (4.7, 3.3) (5, 3)

Table 2 Bi-matrix of payoffs for the battle of the sexes game [19]. The first (second) entry
in the parenthesis denotes Alice’s (Bob’s) payoffs. The payoffs values obey α > β > γ with
α = 5, β = 3 and γ = 1. The Television and Opera strategies are defined following the
quantum strategy operators T̂A,B = ÛA,B (π, 0) and ÔA,B = ÛA,B (0, 0), respectively. The

quantum strategy operators which satisfy the Marinatto-Weber criteria are ÛA,B

(
0, π

8

)
and

ÛA,B

(
0, 3π

8

)
. The operator Q̂A,B = ÛA,B

(
0, π

2

)
. This table summarizes the data shown

in Fig. 2, which correspond to the most relevant quantum strategy operators and their
respective payoff values for both players.

4 Experimental procedures

In this Nuclear Magnetic Resonance (NMR) experiment, we apply a similar
procedure of the first implementation of the prisoner’s dilemma [15]. Here,
we describe the most important details. The experiment is performed on a
Tecmag/Jastec 400 MHz spectrometer at room temperature (20 ◦C). An en-
riched Chloroform sample (13CHCl3) was used as a two-qubit spin system, in
which the Hydrogen (Carbon) nuclei carries the information about the quan-
tum strategy operator performed by Alice (Bob). The stoichiometry of the
sample is the dissolution of 12 % enriched chloroform and 88 % deuterated
acetone for a total volume of 600 µL. We then seal the sample on a standard
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5 mm NMR tube. The dual channel NMR probe head is a VARIAN 10 mm
for solution samples. The π/2-pulse time is calibrated at 49 µs, for both chan-
nels. Also, the transversal and longitudinal relaxation times are TH

2 ≈ 1.4 s
and TH

1 ≈ 11.74 s for Hydrogen nuclei and TC
2 ≈ 1.2 s and TC

1 ≈ 17.11 s for
Carbon nuclei, respectively. The recycle delay time is 120 s.

The Hamiltonian of the two-spin system (Hydrogen and Carbon nuclei in
this case) is the combination of three energy contributions [32]: the first one is
the Zeeman interaction, which is the interaction between the magnetic moment
of the nuclei with a strong static magnetic field along the z-axis B0 = B0ez,
the second one is the J-coupling between neighbor interacting nuclear spins,
and the third one is the interaction between the magnetic moment of the nuclei
with an external time-dependent weak magnetic field parallel to the xy-plane.
Those energy contributions are represented in the rotating frame description
by the Hamiltonian:

Ĥ = −
(
ωH
L − ωH

rf

)
ÎHz −

(
ωC
L − ωC

rf

)
ÎCz + 2πJ ÎHz Î

C
z

+ωH
1

(
ÎHx cosφH + ÎHy sinφH

)
+ ωC

1

(
ÎCx cosφC + ÎCy sinφC

)
, (9)

in which ωH,C
L are the Larmor frequencies of each nuclear specie, ωH,C

rf are the

radio-frequencies of the external time-dependent weak magnetic field, ωH,C
1 are

the intensity of the external time-dependent weak magnetic field, φH,C define
the direction of the external time-dependent weak magnetic field and ÎH,C

x,y,z

are the spin angular momentum operators.

The main task of the experimental setup is to perform the game protocol
depicted in Fig. 1. For that purpose, the game protocol is encoded as a pulse
sequence (Fig. 3), and here we introduce the most important details.

y x y x

1
H

13
C

y

θ

θ

A

B

x y x

φ

φ

A

B

x

x

x

x

x

x

x

x

x

x

x

x

average

procedure

Temporal

00

Entangle Disentangle

T
o
m

o
g
r.

 P
ro

ce
d
.

τ τ τ'τ'

Fig. 3 (Color online) NMR Pulse sequence to implement and to monitor the Eisert-Wilkens-
Lewenstein protocol [6]. The thicker black bars represent π-pulses, the thinner black bars
represent π/2-pulses. Light and dark green bars represent variable length pulses and depend
on the angular parameters θA,B and φA,B, and we use them to control the quantum game.
Above each bar, the letters x and y denote the positive direction of the axis to perform the
radio-frequency pulse, and x and y denote the negative direction of that axis to perform the
radio-frequency pulse. The gaps between the bars indicate free evolutions.
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Initialization.- Standard high temperature NMR description of the quan-
tum state is expressed as a first order expansion of the density matrix definition

ρ̂ =
1

Z
exp

[
−βĤ0

]
' 1

Z
1̂4×4 −

β

Z
Ĥ0,

where Z is the partition function, β = (kBT )
−1

, kB is the Boltzmann constant
and T the room temperature, Ĥ0 is the Zeeman Hamiltonian at the laboratory
frame Ĥ0 = −~ωH

L Î
H
z − ~ωC

L Î
C
z , so that the density matrix is expressed as

ρ̂ ' 1

Z
1̂4×4 +

β~ωH
L

Z

(
ÎHz +

ωC
L

ωH
L

ÎCz

)
. (10)

The main purpose of the initialization procedure is to transform the second
term of the expanded density matrix into a contribution with equivalent prop-
erties of an effective pure state. In order to do that, we use the temporal
average procedure, which consists of the permutation of populations of the
density matrix to reduce the noise level [33]. As the density operator is rep-
resented by a 4 × 4 matrix, it represents four populations labelled p1, p2, p3,
and p4. The procedure involves three stages: in the first one, we perform no
permutation of populations; in the second one there is a permutation of pop-
ulations as p2 → p′4 , p3 → p′2 , and p4 → p′3 (see Eq. (6) of Ref. [33]); in the
third step we perform the inverse permutation of populations as p4 → p′′2 ,
p3 → p′′4 , and p2 → p′′3 (see Eq. (7) of Ref. [33]). The average density matrix
is represented as

ρ̂ '
(

1

Z
− ε

4

)
1̂4×4 + ε |00〉 〈00| , (11)

where ε = 4β~
3Z

ω H
L +ωC

L

2 ∼ 1.34× 10−5.
Therefore, the quantum system is initialized at the quantum state |0, 0〉 ≡

|OA, OB〉 and experimentally achieved using the temporal average procedure
[33].

The Judge operator.- The action of the Judge in the game protocol is to
entangle and to disentangle the quantum state of the two-qubit spin system, as
discussed in Ref. [15]. Here, we represent both procedures by the orange square
on Fig. 3. Both actions are performed using three radio frequency pulses and
two free evolutions. The entangling procedure starts performing a π/2-pulse
along the negative x-axis on both channels; next, a free evolution during τ =
λ

2πJ is executed; we apply a π-pulse along the negative x-axis on both channels,

another free evolution during τ = λ
2πJ and finally we apply another π/2-pulse

along the negative x-axis on both channels. The disentangling procedure is very
similar to the previous one, the only difference being the free evolution occurs
during τ ′ = 2π−λ

2πJ . The control parameter of the Judge’s action is established
by λ ∈

[
0, π2

]
and it is adjusted to π

2 to emulate the regime of maximum
entanglement of the quantum states, and the parameter J = 215 Hz is the
scalar coupling constant between the 1H and 13C nuclei.

Quantum strategies operators.- The theoretical representation of strategy
operator is described in Eq. (3). It depends on two angular parameters θ and
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φ. The θ-control is performed by a radio-frequency pulse along the positive y-
axis. The φ-control is performed as a composite z-pulse sequence [34] by three
radio-frequency pulses as follows: a π/2-pulse along the positive x-axis, φ-pulse
along the positive y-axis, performed twice, and a π/2-pulse along the negative
x-axis. This description is for both channels, so that the θ- and φ-controls are
represented in Fig. 3 by light and dark green squares, respectively.

Tomography procedure.- This is a read out procedure used to reconstruct
the density matrix. The procedure is performed by a series of nine experi-
ments described as II, IX, IY, XI, XX, XY, YI, YX, YY, in which the first
(second) entry represents an action on the Hydrogen (Carbon) nuclei [35,36,
37]. The label described “I” means no radio-frequency pulse, “X” represents
to perform a π/2-pulse along the positive x-axis, and “Y” means performing
a π/2-pulse along the positive y-axis. After performing the respective radio-
frequency pulses, the detector is turned on to observe the free induction decay.

This procedure was used in other applications as detailed in Ref. [38,39].
The result of the implementation of the tomography procedure using the ex-
perimental setup as described above can be sketched as bar charts on Fig. 4.
We plot the real part of the density matrices for seven sets of parameters that
make up a quantum strategy operator each. We display on the left (right) bar
charts of Fig. 4 the experimental (theoretical) density matrices. Theoretical
density matrices are computed from Eq. (6). Fidelity values are above 93 %.
Those seven density matrices are used to calculate the experimental data rep-
resented by red triangle and blue square symbols in Fig. 2(c). The payoff values
from the experimental data are computed using the diagonal elements of the
density matrix displayed in Fig. 4, where the labels |OO〉 〈OO| represents the
probabilities POO, and similarly for the other elements of the density matrix
and probabilities of Eq. (7) and Eq. (8). An error data analysis is displayed
on Tab. 3 in which we compute the error εA,B, between the theoretical ex-

pectation value $A,B and the experimental results £A,B of Alice’s and Bob’s
payoffs, represented by the expression εA,B = £A,B × (1− F ). Also, the error
values are sketched in Fig. 2(c) of the main text as a bar error of experimental
results represented by triangle and square symbols.

5 Discussion

To determine a satisfactory condition as the solution to the game, we use the
main point that the Marinatto-Weber protocol highlight, “both players have
the same degree of satisfaction” [19]. Therefore, the mathematical procedure
compatible with that information is to compare Alice’s and Bob’s payoffs.
Thereby, we compare Fig. 2(a) and Fig. 2(b), or analogously Eq. (7) and Eq.
(8) for an analytical procedure (an extended theoretical description developed
to calculate the values of the angular parameters which satisfy the Marinatto-
Weber condition is shown in appendix A). We can observe that the highest
values of payoff with both players having equal payoff occurs when they play
with quantum strategy operators defined by ÛA (0, φA) and ÛB (0, φB). From
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Fig. 4 (Color on-
line) Bar charts
representing the
real elements of
the tomographed
density matrices for
the set of angular
parameters used for
the chosen quantum
strategies operators.
Imaginary elements
are neglected as
their values are
lower than 0.1. The
left (right) column
of the bar charts
represents experi-
mental (theoretical)
density matrices.
The fidelity values
F of the experimen-
tal density matrices
are above 93 %.
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Eq. (7) and Eq. (8), assuming θA,B = 0, we get:

$A (θA, φA, θB, φB) = $A (0, φA, 0, φB) = 5 cos2 (φA + φB) + 3 sin2 (φA + φB) , (12)

$B (θA, φA, θB, φB) = $B (0, φA, 0, φB) = 3 cos2 (φA + φB) + 5 sin2 (φA + φB) . (13)

Given that staying together favors both players and is the most trivial
case, they should choose a quantum strategy operator that has the same θ
and φ parameters (the general case is demonstrated in appendix A). From
that, it is visible that the values of φA and φB are the same and from the
payoff equations they can be either π/8 or 3π/8, yielding the possible quantum
strategy operators in the single qubit representation:

Û
(

0,
π

8

)
=

[
exp

[
iπ8
]

0
0 exp

[
−iπ8

] ] , (14)

Û

(
0,

3π

8

)
=

[
exp

[
i 3π8
]

0
0 exp

[
−i 3π8

] ] , (15)

where the two player operator representation is ÛA = Û⊗ 1̂ and ÛB = 1̂⊗Û.
The strategy operators (14) and (15) mean that Alice and Bob may choose the
same entertainment option with payoffs that are equal for both. The payoff
resulting from these strategies for each player is given by:

$A (θA, φA, θB, φB) = $A

(
0,
π

8
, 0,

π

8

)
=

α+ β

2
=

5 + 3

2
= 4, (16)

$B (θA, φA, θB, φB) = $B

(
0,
π

8
, 0,

π

8

)
=

β + α

2
=

3 + 5

2
= 4. (17)

Similar payoffs are achieved if the players use φA,B = 3π
8 .

With these results in hand, we can explore the Eisert-Wilkens-Lewenstein
protocol to try and elucidate which actions to perform when confronted with
any situation. Therefore, the protocol highlights all the available choices for
each player such that it becomes visible which option minimizes losses or
maximizes gains. From those possibilities, the quantum game preserves the

Table 3 Theoretical and Experimental values of Alice’s and Bob’s payoffs for the main
quantum strategies operators analyzed in this study. We use £A,B to represent the pay-
offs computed from the experiments and εA,B the error between theoretical prediction and
experimental results.

Quan. Strat. Theoretical Experimental

(θA, φA, θB, φB) $A $B £A ± εA £B ± εB
(π, 0, π, 0) 3.0 5.0 2.8± 0.2 4.5± 0.7(
π
2
, 0, π

2
, 0
)

2.5 2.5 2.2± 0.4 1.6± 0.3
(0, 0, 0, 0) 5.0 3.0 4.3± 1.0 2.7± 0.4(
0, π

8
, 0, π

8

)
4.0 4.0 3.6± 0.5 3.7± 0.5(

0, π
4
, 0, π

4

)
3.0 5.0 2.8± 0.4 4.2± 1.0(

0, 3π
8
, 0, 3π

8

)
4.0 4.0 3.4± 0.6 3.7± 0.7(

0, π
2
, 0, π

2

)
5.0 3.0 4.7± 1.2 2.9± 0.5



Pareto-optimal solution for the quantum battle of the sexes 13

classical game with their respective payoff values, as we can see from data
of Fig. 2, and the most trivial and relevant moves are summarized at the bi-
matrix on Tab. 2. From the point past the Opera-Opera equilibria, we need a
different interpretation to discuss and explain this strictly quantum regime of
the game.

Fig. 2(a) and Fig. 2(b), explicitly represent the bi-matrix of payoff, and
from them, we can analyze some of the principal properties of game theory.

We distinguish three possible choices of quantum operator strategies that
satisfy the pareto-optimal definition. This definition establishes that for a pair
of strategies it is not possible to increase the payoff of one player without
decreasing the payoff of another [40,2,6]. Mathematically, the rate of change of
Alice’s payoff with respect to any variation of one of their angular parameters
has opposite signal to the rate of change of Bob’s payoff. This statement is
related with a geometrical interpretation of the following gradient:

∂$A
∂ξA

∣∣∣∣∣
{φ0

A,θ
0
A,φ

0
B,θ

0
B}

= − ∂$B
∂ξB

∣∣∣∣∣
{θ0A,φ0

A,θ
0
B,φ

0
B}

, (18)

where
{
θ0A, φ

0
A, θ

0
B, φ

0
B

}
is the bound established by the mathematical proce-

dure at the end of appendix A and ξ ∈ {θ, φ}.
Following the payoff curve from Fig. 2(c) from a geometrical point of view

and the 1◦, 2◦ and 4◦ items from the final part of appendix A, we can see that
the quantum strategy operators ÛA

(
0, π8

)
and ÛB

(
0, π8

)
satisfy the pareto-

optimal definition, Eq. (18), so that computing the respective derivative oper-

ators the rates are found to be ∂$A
∂φA

= −α+ β and ∂$B
∂φB

= α− β at the bound

parameter values
{
θ0A = 0, φ0A = π

8 , θ
0
B = 0, φ0B = π

8

}
. The same procedure is

applied for the quantum strategy operator ÛA

(
0, 3π8

)
with ÛB

(
0, 3π8

)
, in

which the rates are found ∂$A
∂φA

= α−β and ∂$B
∂φB

= −α+β at the bound param-

eter values
{
θ0A = 0, φ0A = 3π

8 , θ
0
B = 0, φ0B = 3π

8

}
. In the case of the quantum

strategy operator ÛA

(
π
2 , 0
)

with ÛB

(
π
2 , 0
)

the rates are ∂$A
∂θA

= −α+β
4 and

∂$B
∂θB

= α−β
4 at the bound parameter values

{
θ0A = π

2 , φ
0
A = 0, θ0B = π

2 , φ
0
B = 0

}
.

One interesting point about these three pairs of quantum strategy opera-
tors is that the payoffs for both players are the same. However, the payoff values
$A
(
0, π8 , 0,

π
8

)
= $B

(
0, π8 , 0,

π
8

)
= α+β

2 and $A
(
0, 3π8 , 0,

3π
8

)
= $B

(
0, 3π8 , 0,

3π
8

)
=

α+β
2 while $A

(
π
2 , 0,

π
2 , 0
)

= $B
(
π
2 , 0,

π
2 , 0
)

= α+β+2γ
4 such that α+β

2 > α+β+2γ
4 .

The latter set of angular parameters {θ0A = π
2 , φ

0
A = 0, θ0B = π

2 , φ
0
B = 0} is not

so interesting because the degree of satisfaction of both players is considerably
smaller than the degree of satisfaction of the former.

Those set of angular parameters configure pairs of quantum strategy oper-
ators that players can apply to achieve the same degree of happiness, without
restricting their moves as happens in the original version of Marinatto-Weber
protocol [19] and in other studies [10,9].

There is another interesting set of angular parameter values established
by equations tan θA

2 = cot θB2 and φA + φB = π
2 (see item 3◦ at the end
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of appendix A). The player’s payoffs are analysed using the linear equation,
making the player’s payoffs dependent only on θA and θB. Next, computing
the maximum or minimum of any function, it shows that Alice’s and Bob’s
payoff achieve their maximum at θA = θB. This equality is used to solve the
equation tan θA

2 = cot θB2 , where the angular parameters satisfy θA = θB = π
2

and represent a maximum. This set of angular parameters is used to verify
if the player’s payoffs satisfy the definition of Nash equilibrium (see Eq. (1)
and Eq. (2)), so that we found many Nash equilibria given by φA + φB = π

2
and θA = θB = π

2 . A graphical representation of them is made on Fig. 6(d,e,f)
where the maximum of the surface achieves the definition, and the trivial case
φA = φB = π

4 and θA = θB = π
2 , is represented by a black circle in Fig. 6(f).

Similar results were summarized on table of Sec. IIB of Ref. [22].
Lastly, there is a common misunderstanding related to Table 2, when using

it to define a new classical game [43]. If one desires to map a classical game
from a quantum game, it is necessary to use the data from Fig. 2 or Eq. (7)
and Eq. (8). The advantage of the quantum game arises at this point. We
understand that using Table 2 to map a classical game is a tricky procedure
because it is easy to map a classical game from a quantum game if one knows
the solutions, but the mapping becomes more laborious if one does not know
the solution. In this work, we use Table 2 only to show numerical values of
payoffs related to Fig. 2 for the most important quantum strategy operators to
elucidate the solution of the game. Another interesting point in this discussion
is related to the effect of the entanglement parameter. Using similar proce-
dures and considering trivial angular parameters values, we find that λ = π

4
is the minimum value at which the present discussion makes sense. Below this
value, the pareto-otimal solutions are lost and the advantages of entanglement
drastically diminish.

6 Conclusions

In summary, we have explored the Eisert-Wilkens-Lewenstein protocol to an-
alyze an asymmetric game, the battle of the sexes. It preserves the classical
regime and also gives insights at the quantum regime. Two pareto-optimal
solutions that provide the same degree of satisfaction for both players arise.
The degree of satisfaction for both players is compatible with that predicted
from Marinatto-Weber protocol. Quantum states that represent the solution
for the battle of the sexes are not solutions to the prisoner’s dilemma game.
Finally, the Eisert-Wilkens-Lewenstein protocol may be successfully imple-
mented even in the case of asymmetric games at the quantum description, not
being restricted to the symmetric cases.
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Appendix A Theoretical analysis

Extended details are presented in this appendix to highlight the importance
of the theoretical and experimental data contained in Fig. 2(a,b,c). Also, we
give some details about the mathematical procedures from which we draw our
conclusions.

The most relevant aspect of quantum circuits is their ability to provide
analytical solutions. For this reason, we test the Eisert-Wilkens-Lewenstein
protocol [6] in the context of asymmetrical games. As it was introduced in
the main text, the protocol delivers mathematical expressions of probabilities
at different degrees of entanglement (λ), denoted by PsA,sB = |〈sA, sB |ψf 〉|2,
where sA,B ∈ {O, T}, such that the probabilities are explicitly expressed

POO =
(
cos2 (φA + φB) + sin2 (φA + φB) cos2 λ

)
cos2

θA
2

cos2
θB
2

, (19)

POT =
(
cos2 φA + sin2 φA cos2 λ

)
cos2

θA
2

sin2 θB
2
− cosφA sinφB sin θA sin θB sinλ

2
+

(
sinφB sin

θA
2

cos
θB
2

sinλ

)2

, .(20)

PTO =
(
cos2 φB + sin2 φB cos2 λ

)
sin2 θA

2
cos2

θB
2
− cosφB sinφA sin θA sin θB sinλ

2
+

(
sinφA cos

θA
2

sin
θB
2

sinλ

)2

, .(21)

PTT =

(
sin

θA
2

sin
θB
2

+ sin (φA + φB) cos
θA
2

cos
θB
2

sinλ

)2

. (22)

We apply Eq. (19-22) to evaluate Alice’s and Bob’s payoffs established in Eq.
(7) and Eq. (8), respectively. Both expressions depend on eight parameters
φA, φB, θA, θB, λ, α, β, and γ. In this paper, we analyse the player’s payoffs
at the highest degree of entanglement with λ = π

2 , allowing Eq. (7) and Eq.
(8) are rewritten

$A = α

(
cos2 (φ A + φB) cos2

θA
2

cos2
θB
2

)
+γ

(
cos2 φA cos2

θA
2

sin2 θB
2
− cosφA sinφB sin θA sin θB

2
+ sin2 φB sin2 θA

2
cos2

θB
2

)
+γ

(
cos2 φB sin2 θA

2
cos2

θB
2
− cosφB sinφA sin θA sin θB

2
+ sin2 φA cos2

θA
2

sin2 θB
2

)
+β

(
sin

θA
2

sin
θB
2

+ sin (φA + φB) cos
θA
2

cos
θB
2

)2

,
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$B = β

(
cos2 (φA + φB) cos2

θA
2

cos2
θB
2

)
+γ

(
cos2 φA cos2

θA
2

sin2 θB
2
− cosφA sinφB sin θA sin θB

2
+ sin2 φB sin2 θA

2
cos2

θB
2

)
+γ

(
cos2 φB sin2 θA

2
cos2

θB
2
− cosφB sinφA sin θA sin θB

2
+ sin2 φA cos2

θA
2

sin2 θB
2

)
+α

(
sin

θA
2

sin
θB
2

+ sin (φA + φB) cos
θA
2

cos
θB
2

)2

,

so that, if γ = 0 these mathematical expressions of both players payoffs match
analogous expressions as in Eq. (3.2) of Ref. [41].

With these expressions in hand, we perform the first stage of the mathe-
matical procedure to find Pareto-optimal solutions, which is setting $A = $B,
or equivalently $A − $B = 0. After an algebraic manipulation we obtain(

cos (φA + φB) cos
θA
2

cos
θB
2

)2

−
(

sin
θA
2

sin
θB
2

+ sin (φA + φB) cos
θA
2

cos
θB
2

)2

= 0,

(23)
as we see, the main advantage of the algebraic manipulation is to reduce the
parameter dependence to only φA, φB, θA, θB. Next we separate the parameter
dependence by generating a quadratic polynomial in tan θA

2 tan θB
2 with the

help of trigonometrical identities and maintaining φA and φB as coefficients of
the quadratic polynomial(

tan
θA
2

tan
θB
2

)2

+2 sin (φA + φB) tan
θA
2

tan
θB
2
−
(
cos2 (φA + φB)− sin2 (φA + φB)

)
= 0,

(24)
and solving the quadratic equation we find the roots:

tan
θA
2

tan
θB
2

= − sin (φA + φB) + cos (φA + φB) , (25)

tan
θA
2

tan
θB
2

= − sin (φA + φB)− cos (φA + φB) , (26)

Eq. (25) and Eq. (26) represent two independent mathematical expressions.
To correlate them, we multiply and take the square root of each side, so that
we have:

tan
θA
2

tan
θB
2

=
√

1− 2 cos2 (φA + φB) =
√
− cos 2 (φA + φB) =

√
Φ (φA + φB).

(27)
The two key characteristics of Eq. (27) are that (i) two pairs of angular pa-
rameters are at opposite sides of the expression, and the analysis can be made
separately; (ii) taking the square root of both sides makes the valid domain
of φ values easily visible since the right side must remain a real number (R).
In this sense, we first analyze the term with dependence on φA + φB and next
the term with dependence on θA and θB.
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Fig. 5 (Color online) We sketch the left side
of Eq. (27) as a contour plot, and we use

eight bounding values of
√
Φ (φA + φB) =

0.1, 0.2, . . . ,
√

1
2
, 1, which the last one cor-

responds to the upper bound of real values.

The φA and φB angular parameter dependence on the right side of Eq. (27)
can be analysed by estimating their roots and their maximum and minimum
values

− cos 2 (φA + φB) = Φ (φA + φB) ≥ 0. (28)

where the linear equation satisfies the following bounds

φA + φB =


π
4 ,

3π
4 root values of Φ

π
2 maximum value of Φ

0, π minimum values of Φ
(29)

We can establish the parameter dependence with the following function for
any value of (φA + φB) ∈ [0, π]:

tan
θA
2

tan
θB
2

=


− sin (φA + φB) + cos (φA + φB) , φA + φB ∈

[
0, π4

]
∪
[
3π
4 , π

]
√
− cos 2 (φA + φB) , φA + φB ∈

[
π
4 ,

3π
4

]
(30)

The θA and θB angular parameter dependence on the left side of the Eq.
(27) can be analysed using the bounds established by the procedure on the
right side of Eq. (27). We sketched them in Fig. 5 as a contour plot evaluating

Eq. (27) under eight values for
√
Φ (φA + φB) = 0.1, 0.2, . . . ,

√
1
2 , 1. The

main feature of the equation in Eq. (27) is that as θA (θB) increases θB (θA) de-
creases, enabling many different solutions. We will focus only on the special val-
ues related with

√
Φ (φA + φB). For the lower bound of

√
Φ (φA + φB) = 0, the

θA and θB angular parameters are null. For the upper bound of
√
Φ (φA + φB) =

1, the θA and θB angular parameters are related by the trigonometric equation
tan θA

2 tan θB
2 = 1 or tan θA

2 = cot θB2 , and this one is sketched in Fig. 5. In the

case of
√
Φ (φA + φB) = i, the analysis is made on Eq. (25) and Eq. (26) which

means weak correlated parameter values between {φA, φB} and {θA, θB}. From
this procedure there are two equations tan θA

2 tan θB
2 = ±1.

It is interesting to visualize the information from the mathematical proce-
dure detailed above using 3D plots. In Fig. 6, we display surface plots of the
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Fig. 6 (Color online) Surface plots of Alice’s
(

$A

)
and Bob’s

(
$B

)
payoffs for the battle

of the sexes quantum game, where α = 5, β = 3 and γ = 1 such that obey the relation α >
β > γ. Surface plots are depicted under the parameter domain π

2
≥ φA ≥ 0 and π ≥ θA ≥ 0

such that the angular parameters are setting to the following values φB =
{

0, π
8
, π
4

}
and

θB =
{

0, π
2
, π
}

.

player’s payoffs as a function of (φA, θA) with the fixed values of φB = 0, π8 ,
π
4

and θB = 0, π2 , π. Values of φB = 3π
8 ,

π
2 would produce similar surfaces to

φB = π
8 , 0, respectively, and are therefore not shown here. We would also pro-

duce similar surfaces if instead of fixing the values of (θB, φB) and varying
(θA, φA), we fixed the values of (θA, φA) and varied (θB, φB). Some of those
parameters are set to highlight the information generated from the mathemat-
ical procedure for φA + φB = π

4 related to the outcome of the mathematical
procedure for the lower bound. In the particular case of φA = φB = π/8
and θA = θB = 0, it is represented by a black square symbol under the sur-
face plot of Fig. 6(b). That point would be equivalent to the point obtained
with φA + φB = 3π

4 , with φA = φB = 3π
8 and θA = θB = 0. The result ob-

tained at the upper bound is set by the linear equation φA + φB = π
2 and

tan θA
2 = cot θB2 . From these equations, the trivial angular parameters are

given by φA = φB = π
4 and θA = θB = π

2 , and represented by a black circle
symbol under the surface plot of Fig. 6(f).
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Therefore, the main information generated by the choice of the angular pa-
rameters following the mathematical analysis introduced in this appendix are:
(I) Increasing (Decreasing) the values of θA,B inhibits (promotes) the effects
on the values of φA,B; (II) The lower bounds generated from the analysis of Eq.
(27) allows identifying angular parameter values that are checked by two lin-
ear equations, where the set of trivial values are

{
φA = φB = π

8 , θA = θB = 0
}

and
{
φA = φB = 3π

8 , θA = θB = 0
}

. Similarly, the upper bound allows identi-

fying the other set of trivial values
{
φA = φB = π

4 , θA = θB = π
2

}
; (III) The

bounds related to Eq. (25) and Eq. (26) have trivial angular values given
by
{
φA = φB = 0, θA = θB = π

2

}
and

{
φA = φB = π

2 , θA = θB = π
2

}
. (IV) The

information about the parameter values generated from Eq. (27) for positive
(negative) real values of Φ corresponds to high (low) correlation between pay-
offs values of each player.

With all these equations, we can now analyse the payoff functions to quan-
tify the degree of happiness of each player under the following:

1◦ The first set of parameter values θA = θB = 0 and φA + φB = π
4 de-

fine the quantum strategy operator Û (0, φA) ⊗ Û (0, φB). The payoffs of
both players are $A = α+β

2 and $B = β+α
2 which when substituting the

values for α, β and γ the payoffs becomes $A (θA = 0, θB = 0, φA, φB) =
$B (θA = 0, θB = 0, φA, φB) = 4.

2◦ The second set of parameter values θA = θB = 0 and φA +φB = 3π
4 , which

defines Û (0, φA)⊗ Û (0, φB), so that the payoffs of both players are $A =
α+β
2 and $B = β+α

2 . Substituting the values for α and β the payoffs assume

the value $A (θA = 0, θB = 0, φA, φB) = $B (θA = 0, θB = 0, φA, φB) = 4.
3◦ The third set of parameter values is tan θA

2 = cot θB2 and φA + φB = π
2 ,

which establish the quantum strategy operator Û (θA, φA) ⊗ Û (θB, φB).

The payoffs of both players are $A = γ
((

cos θA2 sin θB
2

)2
+
(
sin θA

2 cos θB2
)2 − sin θA sin θB

2

)
+

β
(
sin θA

2 sin θB
2 + cos θA2 cos θB2

)2
and $B = γ

((
cos θA2 sin θB

2

)2
+
(
sin θA

2 cos θB2
)2 − sin θA sin θB

2

)
+

α
(
sin θA

2 sin θB
2 + cos θA2 cos θB2

)2
, which when substituting the numerical

values for α, β and γ at their maximum angular parameter values yields
$A
(
θA = π

2 , θB = π
2 , φA, φB

)
= 3 and $B

(
θA = π

2 , θB = π
2 , φA, φB

)
= 5.

4◦ The fourth set of parameter values is tan θA
2 = cot θB2 and φA + φB = 0,

which establish the quantum strategy operator Û (θA, φA) ⊗ Û (θB, φB).
The payoffs of both players are $A = α+2γ+β

4 and $B = β+2γ+α
4 , which

when substituting the numerical values for α, β and γ yields $A (θA, θB, φA, φB) =
$B (θA, θB, φA, φB) = 2.5.

5◦ The fifth set of parameter values is tan θA
2 = cot θB2 and φA+φB = π, which

establish the quantum strategy operator Û (θA, φA)⊗Û (θB, φB). The pay-
offs of both players are $A = α+2γ+β

4 and $B = β+2γ+α
4 , which when sub-

stituting the numerical values for α, β and γ yields $A (θA, θB, φA, φB) =
$B (θA, θB, φA, φB) = 2.5.
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The set of angular parameters improves the degree of happiness of both
players by taking advantage of the quantum mechanical nature of the game
[42], and these strategies have no classical counterpart [43]. To make it more
evident, at the left and right column of Fig. 4 we plot the theoretical density
matrix elements as bar charts. The second, fourth and sixth bar charts repre-
sent the quantum state generated by performing quantum operator strategies
using the above angular parameters. The fourth and sixth bar charts represent
quantum states with maximum quantum correlations studied using Quantum
discord [38,39] or entropic methodologies [44]. In this sense, the fourth density
matrix characterised by the parameters θA,B = 0 and φA.B = π

8 is equivalent
to the Bell state

∣∣Φ+
ap

〉
as sketched on Fig. 2 of Ref. [45]. Also, the sixth density

matrix with parameters θA,B = 0 and φA,B = 3π
8 is equivalent to the Bell state∣∣Φ−ap〉. The first, third, fifth and seventh bar charts represent quantum states

without quantum correlations, which could, therefore, have classical counter-
part.
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