Skip to main content
Log in

Recent advances in nanowire quantum dot (NWQD) single-photon emitters

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Future development of quantum technologies is dependent upon physical implementation of quantum systems. Photonic platforms have gained significant attention owing to the appealing properties that they offer, namely small probabilities of decoherence emergence, as well as being readily manipulable. In this regard, single-photon emitters play an integral role, and advancements in the design of single-photon sources, providing an anti-bunching photon correlation, have transitioned from its formerly proof-of-concept status to engineering attempts, and this has realized thanks to the ever-increasing improvements in the development of promising material platforms. In the race toward the realization of on-demand single-photon sources, solid-state host systems and in particular the quantum dot (QD)-based schemes, have very-well taken advantage of the recent headways in the bottom-up nanofabrication procedures. In this contribution, a review is presented on the recent progress and the existing challenges in fabrication of single-photon emitters, based on QD-containing nanowires (NWs) and their principles of operation. More specifically, we will consider how variation in values of different parameters, such as the purity, height and diameter of the NW waveguides, the electric-dipole orientation of the embedded QD, as well as different waveguide geometries, fabrication techniques and conditions exploited in their manufacturing, will affect the desired outputs in the system, i.e., the narrow photoluminescence spectrum, ideal single-photon emission of sufficient lifetime, and also the Gaussian profile in the far-field distribution. Additional focus is also given to different areas that the NWQD single-photon emitters have found application for quantum information processing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

Similar content being viewed by others

References

  1. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964)

    MathSciNet  Google Scholar 

  3. MohammadNejad, S., KhodadadKashi, A., Arab, H.: Single-and two-qubit universal quantum gates in photonic Ti:LiNbO3 circuits. Optik 182, 907–921 (2019)

    Article  ADS  Google Scholar 

  4. MohammadNejad, S., KhodadadKashi, A.: Realization of quantum SWAP gate using photonic integrated passive and electro-optically active components. Fiber Integr. Opt. 38, 1–20 (2019)

    Article  Google Scholar 

  5. Saleh, M.F., Di Giuseppe, G., Saleh, B.E., Teich, M.C.: Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photonics J. 2, 736–752 (2010)

    Article  ADS  Google Scholar 

  6. MohammadNejad, S., KhodadadKashi, A.: CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti:LiNbO3 channel waveguides. Opt. Quantum Electron. 51, 301 (2019)

    Article  Google Scholar 

  7. Taherkhani, M., Nejad, S.M.: Polarization-dependent mode analyzer and controlled-Z gate in Ti:LiNbO3 quantum photonic circuits. Fiber Integr. Opt. 31, 355–368 (2012)

    Article  ADS  Google Scholar 

  8. Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  9. Senellart, P., Solomon, G., White, A.: High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017)

    Article  ADS  Google Scholar 

  10. Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., et al.: Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017)

    Article  ADS  Google Scholar 

  11. Takemoto, K., Nambu, Y., Miyazawa, T., Sakuma, Y., Yamamoto, T., Yorozu, S., et al.: Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015)

    Article  ADS  Google Scholar 

  12. Sit, A., Bouchard, F., Fickler, R., Gagnon-Bischoff, J., Larocque, H., Heshami, K., et al.: High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017)

    Article  ADS  Google Scholar 

  13. Morris, P.A., Aspden, R.S., Bell, J.E., Boyd, R.W., Padgett, M.J.: Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015)

    Article  ADS  Google Scholar 

  14. Motes, K.R., Olson, J.P., Rabeaux, E.J., Dowling, J.P., Olson, S.J., Rohde, P.P.: Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit. Phys. Rev. Lett. 114, 170802 (2015)

    Article  ADS  Google Scholar 

  15. Motes, K.R., Mann, R.L., Olson, J.P., Studer, N.M., Bergeron, E.A., Gilchrist, A., et al.: Efficient recycling strategies for preparing large Fock states from single-photon sources: applications to quantum metrology. Phys. Rev. A 94, 012344 (2016)

    Article  ADS  Google Scholar 

  16. Olson, J.P., Motes, K.R., Birchall, P.M., Studer, N.M., LaBorde, M., Moulder, T., et al.: Linear optical quantum metrology with single photons: experimental errors, resource counting, and quantum Cramér–Rao bounds. Phys. Rev. A 96, 013810 (2017)

    Article  ADS  Google Scholar 

  17. von Helversen, M., Böhm, J., Schmidt, M., Gschrey, M., Schulze, J.-H., Strittmatter, A., et al.: Quantum metrology of solid-state single-photon sources using photon-number-resolving detectors. New J. Phys. 21, 035007 (2019)

    Article  Google Scholar 

  18. Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018)

    Article  ADS  Google Scholar 

  19. Sparrow, C., Martin-Lopez, E., Maraviglia, N., Neville, A., Harrold, C., Carolan, J., et al.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660 (2018)

    Article  ADS  Google Scholar 

  20. Reimer, M.E., Bulgarini, G., Akopian, N., Hocevar, M., Bavinck, M.B., Verheijen, M.A., et al.: Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012)

    Article  ADS  Google Scholar 

  21. Taherkhani, M., Mohammadnejad, S.: Degenerate entangled photon pairs source based on PPLN waveguide for quantum computation. Opt. Quantum Electron. 45, 1167–1177 (2013)

    Article  Google Scholar 

  22. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)

    Article  ADS  Google Scholar 

  23. Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photonics 10, 631 (2016)

    Article  ADS  Google Scholar 

  24. Schütz, M.J.: Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment. Springer, Berlin (2016)

    MATH  Google Scholar 

  25. Chen, Y., Zopf, M., Keil, R., Ding, F., Schmidt, O.G.: Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun. 9, 2994 (2018)

    Article  ADS  Google Scholar 

  26. Li, Y., Ding, F., Schmidt, O.G.: Entangled-photons generation with quantum dots. Chin. Phys. B 27, 020307 (2018)

    Article  ADS  Google Scholar 

  27. Orieux, A., Versteegh, M.A., Jöns, K.D., Ducci, S.: Semiconductor devices for entangled photon pair generation: a review. Rep. Prog. Phys. 80, 076001 (2017)

    Article  ADS  Google Scholar 

  28. Williamson, A.J., Wang, L.W., Zunger, A.: Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62, 12963–12977 (2000)

    Article  ADS  Google Scholar 

  29. Shumway, J., Williamson, A.J., Zunger, A., Passaseo, A., DeGiorgi, M., Cingolani, R., et al.: Electronic structure consequences of In/Ga composition variations in self-assembled InxGa1−xAs/GaAs alloy quantum dots. Phys. Rev. B 64, 125302 (2001)

    Article  ADS  Google Scholar 

  30. Mlinar, V., Zunger, A.: Effect of atomic-scale randomness on the optical polarization of semiconductor quantum dots. Phys. Rev. B 79, 115416 (2009)

    Article  ADS  Google Scholar 

  31. Balaguru, R.J.B., Jeyaprakash, B.G.: Quantum wells, quantum wires, quantum dots, quantum limit of conductance, quantum capacitance & quantum Hall effect. In: NPTEL, electrical & electronics engineering – semiconductor nanodevices, joint initiative of IITs and IISc, pp. 1–29 (2013)

  32. Tartakovskii, A.: Quantum Dots: Optics, Electron Transport and Future Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  33. He, Y.-M., He, Y., Wei, Y.-J., Wu, D., Atatüre, M., Schneider, C., et al.: On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213 (2013)

    Article  ADS  Google Scholar 

  34. Ding, X., He, Y., Duan, Z.-C., Gregersen, N., Chen, M.-C., Unsleber, S., et al.: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)

    Article  ADS  Google Scholar 

  35. Somaschi, N., Giesz, V., De Santis, L., Loredo, J.C., Almeida, M.P., Hornecker, G., et al.: Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340 (2016)

    Article  ADS  Google Scholar 

  36. Jacak, L., Hawrylak, P., Wöjs, A.: Quantum Dots. Springer, Berlin (1998)

    Book  Google Scholar 

  37. Hu, Y.Z., Koch, S.W., Lindberg, M., Peyghambarian, N., Pollock, E.L., Abraham, F.F.: Biexcitons in semiconductor quantum dots. Phys. Rev. Lett. 64, 1805–1807 (1990)

    Article  ADS  Google Scholar 

  38. Moreau, E., Robert, I., Manin, L., Thierry-Mieg, V., Gérard, J., Abram, I.: Quantum cascade of photons in semiconductor quantum dots. Phys. Rev. Lett. 87, 183601 (2001)

    Article  ADS  Google Scholar 

  39. Borgström, M.T., Zwiller, V., Müller, E., Imamoglu, A.: Optically bright quantum dots in single nanowires. Nano Lett. 5, 1439–1443 (2005)

    Article  ADS  Google Scholar 

  40. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37 (1946)

    Article  ADS  Google Scholar 

  41. Bulgarini, G., Reimer, M.E., Zehender, T., Hocevar, M., Bakkers, E.P., Kouwenhoven, L.P., et al.: Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Appl. Phys. Lett. 100, 121106 (2012)

    Article  ADS  Google Scholar 

  42. Iqbal, P., Preece, J., Mendes, P.M.: Nanotechnology: the “top-down” and “bottom-up” approaches. In: Supramolecular Chemistry: From Molecules to Nanomaterials. Wiley, New York (2012)

    Google Scholar 

  43. Hill, D.J., Cahoon, J.F.: Nanowire synthesis: from top-down to bottom-up. Mater. Matters 12(2), 10–17 (2017)

    Google Scholar 

  44. Mäntynen, H., Anttu, N., Sun, Z., Lipsanen, H.: Single-photon sources with quantum dots in III–V nanowires. Nanophotonics 8, 747–769 (2019)

    Article  Google Scholar 

  45. Christesen, J.D., Pinion, C.W., Grumstrup, E.M., Papanikolas, J.M., Cahoon, J.F.: Synthetically encoding 10 nm morphology in silicon nanowires. Nano Lett. 13, 6281–6286 (2013)

    Article  ADS  Google Scholar 

  46. Niels, L., Zwiller, V.: Integrated semiconductor photon sources and superconducting nanowire single-photon detectors. Master Thesis, Delft University of Technology, Faculty of Applied Sciences, Kavli Institute of Nanoscience, Quantum Transport Group, September (2013)

  47. Fox, M.: Quantum Optics: An Introduction, vol. 15. OUP, Oxford (2006)

    MATH  Google Scholar 

  48. Kimble, H.J., Dagenais, M., Mandel, L.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    Article  ADS  Google Scholar 

  49. Dorenbos, S., Sasakura, H., Van Kouwen, M., Akopian, N., Adachi, S., Namekata, N., et al.: Position controlled nanowires for infrared single photon emission. Appl. Phys. Lett. 97, 171106 (2010)

    Article  ADS  Google Scholar 

  50. Zhang, J., Thew, R., Barreiro, C., Zbinden, H.: Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes. Appl. Phys. Lett. 95, 091103 (2009)

    Article  ADS  Google Scholar 

  51. Mohan, P., Motohisa, J., Fukui, T.: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005)

    Article  ADS  Google Scholar 

  52. Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A., Forchel, A., et al.: Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B 65, 195315 (2002)

    Article  ADS  Google Scholar 

  53. Tanner, M.G., Natarajan, C., Pottapenjara, V., O’Connor, J., Warburton, R., Hadfield, R., et al.: Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl. Phys. Lett. 96, 221109 (2010)

    Article  ADS  Google Scholar 

  54. Dorenbos, S., Reiger, E., Perinetti, U., Zwiller, V., Zijlstra, T., Klapwijk, T.: Low noise superconducting single photon detectors on silicon. Appl. Phys. Lett. 93, 131101 (2008)

    Article  ADS  Google Scholar 

  55. Gol’Tsman, G., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., et al.: Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001)

    Article  ADS  Google Scholar 

  56. Huang, J., Zhang, W., You, L., Zhang, C., Lv, C., Wang, Y., et al.: High speed superconducting nanowire single-photon detector with nine interleaved nanowires. Supercond. Sci. Technol. 31, 074001 (2018)

    Article  ADS  Google Scholar 

  57. Minaev, N., Tarkhov, M., Dudova, D., Timashev, P., Chichkov, B., Bagratashvili, V.: Fabrication of superconducting nanowire single-photon detectors by nonlinear femtosecond optical lithography. Laser Phys. Lett. 15, 026002 (2018)

    Article  ADS  Google Scholar 

  58. Becher, C., Kiraz, A., Michler, P., Imamoğlu, A., Schoenfeld, W., Petroff, P., et al.: Nonclassical radiation from a single self-assembled InAs quantum dot. Phys. Rev. B 63, 121312 (2001)

    Article  ADS  Google Scholar 

  59. Reimer, M.E., Van Kouwen, M.P., Barkelid, M., Hocevar, M., Van Weert, M.H., Algra, R.E., et al.: Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophotonics 5, 053502 (2011)

    Article  ADS  Google Scholar 

  60. Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., et al.: A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174 (2010)

    Article  ADS  Google Scholar 

  61. Kouwen, M.P.V., Reimer, M.E., Hidma, A.W., Van Weert, M.H., Algra, R.E., Bakkers, E.P., et al.: Single electron charging in optically active nanowire quantum dots. Nano Lett. 10, 1817–1822 (2010)

    Article  ADS  Google Scholar 

  62. Minot, E.D., Kelkensberg, F., Van Kouwen, M., Van Dam, J.A., Kouwenhoven, L.P., Zwiller, V., et al.: Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007)

    Article  ADS  Google Scholar 

  63. Shields, A.J.: Semiconductor quantum light sources. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 221–229. World Scientific, Singapore (2010)

    Google Scholar 

  64. Finley, J., Ashmore, A., Lemaître, A., Mowbray, D., Skolnick, M., Itskevich, I., et al.: Charged and neutral exciton complexes in individual self-assembled In (Ga) As quantum dots. Phys. Rev. B 63, 073307 (2001)

    Article  ADS  Google Scholar 

  65. Reimer, M., Dalacu, D., Poole, P., Williams, R.: Biexciton binding energy control in site-selected quantum dots. J. Phys. Conf. Ser. 210, 012019 (2010)

    Article  Google Scholar 

  66. van Weert, M.H., Akopian, N., Perinetti, U., van Kouwen, M.P., Algra, R.E., Verheijen, M.A., et al.: Selective excitation and detection of spin states in a single nanowire quantum dot. Nano Lett. 9, 1989–1993 (2009)

    Article  ADS  Google Scholar 

  67. van Weert, M.H., Akopian, N., Kelkensberg, F., Perinetti, U., van Kouwen, M.P., Rivas, J.G., et al.: Orientation-dependent optical-polarization properties of single quantum dots in nanowires. Small 5, 2134–2138 (2009)

    Article  Google Scholar 

  68. Strauf, S.: Quantum optics: towards efficient quantum sources. Nat. Photonics 4, 132 (2010)

    Article  ADS  Google Scholar 

  69. Barnes, W., Björk, G., Gérard, J., Jonsson, P., Wasey, J., Worthing, P., et al.: Solid-state single photon sources: light collection strategies. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 18, 197–210 (2002)

    Google Scholar 

  70. Bleuse, J., Claudon, J., Creasey, M., Malik, N.S., Gérard, J.-M., Maksymov, I., et al.: Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011)

    Article  ADS  Google Scholar 

  71. Friedler, I., Sauvan, C., Hugonin, J.-P., Lalanne, P., Claudon, J., Gérard, J.-M.: Solid-state single photon sources: the nanowire antenna. Opt. Express 17, 2095–2110 (2009)

    Article  ADS  Google Scholar 

  72. Gregersen, N., Nielsen, T.R., Claudon, J., Gérard, J.-M., Mørk, J.: Controlling the emission profile of a nanowire with a conical taper. Opt. Lett. 33, 1693–1695 (2008)

    Article  ADS  Google Scholar 

  73. Heinrich, J., Huggenberger, A., Heindel, T., Reitzenstein, S., Höfling, S., Worschech, L., et al.: Single photon emission from positioned GaAs/AlGaAs photonic nanowires. Appl. Phys. Lett. 96, 211117 (2010)

    Article  ADS  Google Scholar 

  74. Dalacu, D., Mnaymneh, K., Wu, X., Lapointe, J., Aers, G.C., Poole, P.J., et al.: Selective-area vapor–liquid–solid growth of tunable InAsP quantum dots in nanowires. Appl. Phys. Lett. 98, 251101 (2011)

    Article  ADS  Google Scholar 

  75. Pelton, M., Santori, C., Vucković, J., Zhang, B., Solomon, G.S., Plant, J., et al.: Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

    Article  ADS  Google Scholar 

  76. Strauf, S., Stoltz, N.G., Rakher, M.T., Coldren, L.A., Petroff, P.M., Bouwmeester, D.: High-frequency single-photon source with polarization control. Nat. Photonics 1, 704 (2007)

    Article  ADS  Google Scholar 

  77. Reimer, M.E., van Kouwen, M.P., Hidma, A.W., van Weert, M.H., Bakkers, E.P., Kouwenhoven, L.P., et al.: Electric field induced removal of the biexciton binding energy in a single quantum dot. Nano Lett. 11, 645–650 (2011)

    Article  ADS  Google Scholar 

  78. Friedler, I., Lalanne, P., Hugonin, J.-P., Claudon, J., Gérard, J.-M., Beveratos, A., et al.: Efficient photonic mirrors for semiconductor nanowires. Opt. Lett. 33, 2635–2637 (2008)

    Article  ADS  Google Scholar 

  79. Tribu, A., Sallen, G., Aichele, T., Andre, R., Poizat, J.-P., Bougerol, C., et al.: A high-temperature single-photon source from nanowire quantum dots. Nano Lett. 8, 4326–4329 (2008)

    Article  ADS  Google Scholar 

  80. Caroff, P., Bolinsson, J., Johansson, J.: Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quantum Electron. 17, 829–846 (2011)

    Article  ADS  Google Scholar 

  81. Bao, J., Bell, D.C., Capasso, F., Wagner, J.B., Mårtensson, T., Trägårdh, J., et al.: Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8, 836–841 (2008)

    Article  ADS  Google Scholar 

  82. Sallen, G., Tribu, A., Aichele, T., André, R., Besombes, L., Bougerol, C., et al.: Subnanosecond spectral diffusion of a single quantum dot in a nanowire. Phys. Rev. B 84, 041405 (2011)

    Article  ADS  Google Scholar 

  83. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  84. Dalacu, D., Mnaymneh, K., Lapointe, J., Wu, X., Poole, P.J., Bulgarini, G., et al.: Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. Nano Lett. 12, 5919–5923 (2012)

    Article  ADS  Google Scholar 

  85. Johansson, J., Dick, K.A., Caroff, P., Messing, M.E., Bolinsson, J., Deppert, K., et al.: Diameter dependence of the wurtzite–zinc blende transition in InAs nanowires. J. Phys. Chem. C 114, 3837–3842 (2010)

    Article  Google Scholar 

  86. Poole, P., Dalacu, D., Wu, X., Lapointe, J., Mnaymneh, K.: Interplay between crystal phase purity and radial growth in InP nanowires. Nanotechnology 23, 385205 (2012)

    Article  ADS  Google Scholar 

  87. Mishra, A., Titova, L., Hoang, T., Jackson, H., Smith, L., Yarrison-Rice, J., et al.: Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl. Phys. Lett. 91, 263104 (2007)

    Article  ADS  Google Scholar 

  88. Gadret, E., Dias, G., Dacal, L., de Lima Jr, M., Ruffo, C., Iikawa, F., et al.: Valence-band splitting energies in wurtzite InP nanowires: photoluminescence spectroscopy and ab initio calculations. Phys. Rev. B 82, 125327 (2010)

    Article  ADS  Google Scholar 

  89. Chauvin, N., Hadj Alouane, M., Anufriev, R., Khmissi, H., Naji, K., Patriarche, G., et al.: Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates. Appl. Phys. Lett. 100, 011906 (2012)

    Article  ADS  Google Scholar 

  90. Dacal, L.C., Cantarero, A.: Ab initio electronic band structure calculation of InP in the wurtzite phase. Solid State Commun. 151, 781–784 (2011)

    Article  ADS  Google Scholar 

  91. Jancu, J.-M., Gauthron, K., Largeau, L., Patriarche, G., Harmand, J.-C., Voisin, P.: Type II heterostructures formed by zinc-blende inclusions in InP and GaAs wurtzite nanowires. Appl. Phys. Lett. 97, 041910 (2010)

    Article  ADS  Google Scholar 

  92. Sköld, N., Pistol, M.-E., Dick, K.A., Pryor, C., Wagner, J.B., Karlsson, L.S., et al.: Microphotoluminescence studies of tunable wurtzite InAs0.85P0.15 quantum dots embedded in wurtzite InP nanowires. Phys. Rev. B 80, 041312 (2009)

    Article  ADS  Google Scholar 

  93. Munsch, M., Malik, N.S., Dupuy, E., Delga, A., Bleuse, J., Gérard, J.-M., et al.: Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013)

    Article  ADS  Google Scholar 

  94. Claudon, J., Gregersen, N., Lalanne, P., Gérard, J.M.: Harnessing light with photonic nanowires: fundamentals and applications to quantum optics. ChemPhysChem 14, 2393–2402 (2013)

    Article  Google Scholar 

  95. Aspnes, D., Palik, E.: Handbook of Optical Constants of Solids, pp. 89–112. Academic Press, New York (1985)

    Book  Google Scholar 

  96. Lieb, M.A., Zavislan, J.M., Novotny, L.: Single-molecule orientations determined by direct emission pattern imaging. JOSA B 21, 1210–1215 (2004)

    Article  ADS  Google Scholar 

  97. Curto, A.G., Volpe, G., Taminiau, T.H., Kreuzer, M.P., Quidant, R., van Hulst, N.F.: Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010)

    Article  ADS  Google Scholar 

  98. Hagemeier, J., Bonato, C., Truong, T.-A., Kim, H., Beirne, G.J., Bakker, M., et al.: H1 photonic crystal cavities for hybrid quantum information protocols. Opt. Express 20, 24714–24726 (2012)

    Article  ADS  Google Scholar 

  99. Grzela, G., Paniagua-Domínguez, R., Barten, T., Fontana, Y., Sánchez-Gil, J.A., Gómez Rivas, J.: Nanowire antenna emission. Nano Lett. 12, 5481–5486 (2012)

    Article  ADS  Google Scholar 

  100. Bulgarini, G., Reimer, M.E., Bouwes Bavinck, M., Jöns, K.D., Dalacu, D., Poole, P.J., et al.: Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett. 14, 4102–4106 (2014)

    Article  ADS  Google Scholar 

  101. Toishi, M., Englund, D., Faraon, A., Vučković, J.: High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Opt. Express 17, 14618–14626 (2009)

    Article  ADS  Google Scholar 

  102. Gazzano, O., Almeida, M., Nowak, A., Portalupi, S., Lemaître, A., Sagnes, I., et al.: Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013)

    Article  ADS  Google Scholar 

  103. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165 (2007)

    Article  ADS  Google Scholar 

  104. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H., Legré, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  105. Jayakumar, H., Predojević, A., Kauten, T., Huber, T., Solomon, G.S., Weihs, G.: Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4251 (2014)

    Article  ADS  Google Scholar 

  106. De Greve, K., Yu, L., McMahon, P.L., Pelc, J.S., Natarajan, C.M., Kim, N.Y., et al.: Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012)

    Article  ADS  Google Scholar 

  107. Gao, W., Fallahi, P., Togan, E., Miguel-Sánchez, J., Imamoglu, A.: Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426 (2012)

    Article  ADS  Google Scholar 

  108. Pernice, W.H., Schuck, C., Minaeva, O., Li, M., Goltsman, G., Sergienko, A., et al.: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat.Commun. 3, 1325 (2012)

    Article  ADS  Google Scholar 

  109. Matthews, J.C., Politi, A., Stefanov, A., O’brien, J.L.: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)

    Article  ADS  Google Scholar 

  110. Spirkoska, D., Efros, A.L., Lambrecht, W., Cheiwchanchamnangij, T., i Morral, A.F., Abstreiter, G.: Valence band structure of polytypic zinc-blende/wurtzite GaAs nanowires probed by polarization-dependent photoluminescence. Phys. Rev. B 85, 045309 (2012)

    Article  ADS  Google Scholar 

  111. Masumoto, Y., Hirata, Y., Mohan, P., Motohisa, J., Fukui, T.: Polarized photoluminescence from single wurtzite InP/InAs/InP core–multishell nanowires. Appl. Phys. Lett. 98, 211902 (2011)

    Article  ADS  Google Scholar 

  112. Bulgarini, G., Dalacu, D., Poole, P.J., Lapointe, J., Reimer, M.E., Zwiller, V.: Far field emission profile of pure wurtzite InP nanowires. Appl. Phys. Lett. 105, 191113 (2014)

    Article  ADS  Google Scholar 

  113. Henneghien, A.-L., Gayral, B., Désières, Y., Gérard, J.-M.: Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections. JOSA B 26, 2396–2403 (2009)

    Article  ADS  Google Scholar 

  114. Lukosz, W., Kunz, R.: Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power. JOSA 67, 1607–1615 (1977)

    Article  ADS  Google Scholar 

  115. Akopian, N., Patriarche, G., Liu, L., Harmand, J.-C., Zwiller, V.: Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010)

    Article  ADS  Google Scholar 

  116. Tomioka, K., Motohisa, J., Hara, S., Hiruma, K., Fukui, T.: GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639–1644 (2010)

    Article  ADS  Google Scholar 

  117. Zimmler, M.A., Bao, J., Capasso, F., Müller, S., Ronning, C.: Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008)

    Article  ADS  Google Scholar 

  118. Young, R.J., Stevenson, R.M., Atkinson, P., Cooper, K., Ritchie, D.A., Shields, A.J.: Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006)

    Article  ADS  Google Scholar 

  119. Akopian, N., Lindner, N., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., et al.: Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006)

    Article  ADS  Google Scholar 

  120. Juska, G., Dimastrodonato, V., Mereni, L.O., Gocalinska, A., Pelucchi, E.: Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 7, 527 (2013)

    Article  ADS  Google Scholar 

  121. Kuroda, T., Mano, T., Ha, N., Nakajima, H., Kumano, H., Urbaszek, B., et al.: Symmetric quantum dots as efficient sources of highly entangled photons: violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 88, 041306 (2013)

    Article  ADS  Google Scholar 

  122. Versteegh, M.A., Reimer, M.E., Jöns, K.D., Dalacu, D., Poole, P.J., Gulinatti, A., et al.: Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014)

    Article  ADS  Google Scholar 

  123. Vainorius, N., Lehmann, S., Jacobsson, D., Samuelson, L., Dick, K.A., Pistol, M.-E.: Confinement in thickness-controlled GaAs polytype nanodots. Nano Lett. 15, 2652–2656 (2015)

    Article  ADS  Google Scholar 

  124. Loitsch, B., Winnerl, J., Grimaldi, G., Wierzbowski, J., Rudolph, D., Morkötter, S., et al.: Crystal phase quantum dots in the ultrathin core of GaAs–AlGaAs core–shell nanowires. Nano Lett. 15, 7544–7551 (2015)

    Article  ADS  Google Scholar 

  125. Yeh, C.-Y., Lu, Z., Froyen, S., Zunger, A.: Zinc-blende–wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086 (1992)

    Article  ADS  Google Scholar 

  126. Caroff, P., Dick, K.A., Johansson, J., Messing, M.E., Deppert, K., Samuelson, L.: Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4, 50 (2009)

    Article  ADS  Google Scholar 

  127. Johansson, J., Karlsson, L.S., Svensson, C.P.T., Mårtensson, T., Wacaser, B.A., Deppert, K., et al.: Structural properties of 〈 111〉 B-oriented III–V nanowires. Nat. Mater. 5, 574 (2006)

    Article  ADS  Google Scholar 

  128. Priante, G., Harmand, J.-C., Patriarche, G., Glas, F.: Random stacking sequences in III–V nanowires are correlated. Phys. Rev. B 89, 241301 (2014)

    Article  ADS  Google Scholar 

  129. Dick, K.A., Thelander, C., Samuelson, L., Caroff, P.: Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494–3499 (2010)

    Article  ADS  Google Scholar 

  130. Assali, S., Gagliano, L., Oliveira, D., Verheijen, M., Plissard, S., Feiner, L., et al.: Exploring crystal phase switching in GaP nanowires. Nano Lett. 15, 8062–8069 (2015)

    Article  ADS  Google Scholar 

  131. De, A., Pryor, C.E.: Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. B 81, 155210 (2010)

    Article  ADS  Google Scholar 

  132. Ribeiro, E., Govorov, A.O., Carvalho, W., Medeiros-Ribeiro, G.: Aharonov–Bohm signature for neutral polarized excitons in type-II quantum dot ensembles. Phys. Rev. Lett. 92, 126402 (2004)

    Article  ADS  Google Scholar 

  133. Sellers, I., Whiteside, V., Kuskovsky, I., Govorov, A., McCombe, B.: Aharonov–Bohm excitons at elevated temperatures in type-II ZnTe/ZnSe quantum dots. Phys. Rev. Lett. 100, 136405 (2008)

    Article  ADS  Google Scholar 

  134. Bansal, B., Hayne, M., Geller, M., Bimberg, D., Moshchalkov, V.: Excitonic Mott transition in type-II quantum dots. Phys. Rev. B 77, 241304 (2008)

    Article  ADS  Google Scholar 

  135. Wu, J., Wang, Z.M.: Quantum Dot Solar Cells. Springer, Berlin (2014)

    Book  Google Scholar 

  136. Luque, A., Linares, P.G., Mellor, A., Andreev, V., Marti, A.: Some advantages of intermediate band solar cells based on type II quantum dots. Appl. Phys. Lett. 103, 123901 (2013)

    Article  ADS  Google Scholar 

  137. Kim, S., Lim, Y.T., Soltesz, E.G., De Grand, A.M., Lee, J., Nakayama, A., et al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93 (2004)

    Article  Google Scholar 

  138. Konstantatos, G., Sargent, E.H.: Nanostructured materials for photon detection. Nat. Nanotechnol. 5, 391 (2010)

    Article  ADS  Google Scholar 

  139. Bouwes Bavinck, M., Jöns, K.D., Zieliński, M., Patriarche, G., Harmand, J.-C., Akopian, N., et al.: Photon cascade from a single crystal phase nanowire quantum dot. Nano Lett. 16, 1081–1085 (2016)

    Article  ADS  Google Scholar 

  140. De Godoy, M., Gomes, P., Nakaema, M., Iikawa, F., Brasil, M., Caetano, R., et al.: Exciton g factor of type-II In P∕ Ga As single quantum dots. Phys. Rev. B 73, 033309 (2006)

    Article  ADS  Google Scholar 

  141. Matsuda, K., Nair, S., Ruda, H., Sugimoto, Y., Saiki, T., Yamaguchi, K.: Two-exciton state in Ga Sb/Ga As type II quantum dots studied using near-field photoluminescence spectroscopy. Appl. Phys. Lett. 90, 013101 (2007)

    Article  ADS  Google Scholar 

  142. Ba Hoang, T., Moses, A.F., Ahtapodov, L., Zhou, H., Dheeraj, D.L., van Helvoort, A.T., et al.: Engineering parallel and perpendicular polarized photoluminescence from a single semiconductor nanowire by crystal phase control. Nano Lett. 10, 2927–2933 (2010)

    Article  ADS  Google Scholar 

  143. Thompson, R., Stevenson, R., Shields, A., Farrer, I., Lobo, C., Ritchie, D., et al.: Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001)

    Article  ADS  Google Scholar 

  144. Glas, F., Harmand, J.-C., Patriarche, G.: Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007)

    Article  ADS  Google Scholar 

  145. Plante, M., LaPierre, R.: Control of GaAs nanowire morphology and crystal structure. Nanotechnology 19, 495603 (2008)

    Article  ADS  Google Scholar 

  146. Cirlin, G.E., Dubrovskii, V.G., Samsonenko, Y.B., Bouravleuv, A.D., Durose, K., Proskuryakov, Y.Y., et al.: Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys. Rev. B 82, 035302 (2010)

    Article  ADS  Google Scholar 

  147. Dheeraj, D., Munshi, A., Scheffler, M., van Helvoort, A., Weman, H., Fimland, B.: Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy. Nanotechnology 24, 015601 (2012)

    Article  ADS  Google Scholar 

  148. Soda, M., Rudolph, A., Schuh, D., Zweck, J., Bougeard, D., Reiger, E.: Transition from Au to pseudo-Ga catalyzed growth mode observed in GaAs nanowires grown by molecular beam epitaxy. Phys. Rev. B 85, 245450 (2012)

    Article  ADS  Google Scholar 

  149. Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C., Kim, Y., Fickenscher, M.A., et al.: High purity GaAs nanowires free of planar defects: growth and characterization. Adv. Funct. Mater. 18, 3794–3800 (2008)

    Article  Google Scholar 

  150. Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., Jagadish, C.: Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters. Nano Lett. 10, 908–915 (2010)

    Article  ADS  Google Scholar 

  151. Lehmann, S., Jacobsson, D., Deppert, K., Dick, K.A.: High crystal quality wurtzite–zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires. Nano Res. 5, 470–476 (2012)

    Article  Google Scholar 

  152. Lehmann, S., Jacobsson, D., Dick, K.A.: Crystal phase control in GaAs nanowires: opposing trends in the Ga-and As-limited growth regimes. Nanotechnology 26, 301001 (2015)

    Article  Google Scholar 

  153. Assali, S., Lähnemann, J., Vu, T.T.T., Jöns, K., Gagliano, L., Verheijen, M.A., et al.: Crystal phase quantum well emission with digital control. Nano Lett. 17, 6062–6068 (2017)

    Article  ADS  Google Scholar 

  154. Berthelot, A., Favero, I., Cassabois, G., Voisin, C., Delalande, C., Roussignol, P., et al.: Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759 (2006)

    Article  Google Scholar 

  155. Ates, S., Ulrich, S., Reitzenstein, S., Löffler, A., Forchel, A., Michler, P.: Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)

    Article  ADS  Google Scholar 

  156. Gazzano, O., De Vasconcellos, S.M., Arnold, C., Nowak, A., Galopin, E., Sagnes, I., et al.: Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)

    Article  ADS  Google Scholar 

  157. Reimer, M.E., Bulgarini, G., Fognini, A., Heeres, R.W., Witek, B.J., Versteegh, M.A., et al.: Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys. Rev. B 93, 195316 (2016)

    Article  ADS  Google Scholar 

  158. Suffczyński, J., Dousse, A., Gauthron, K., Lemaître, A., Sagnes, I., Lanco, L., et al.: Origin of the optical emission within the cavity mode of coupled quantum dot–cavity systems. Phys. Rev. Lett. 103, 027401 (2009)

    Article  ADS  Google Scholar 

  159. Winger, M., Volz, T., Tarel, G., Portolan, S., Badolato, A., Hennessy, K.J., et al.: Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009)

    Article  ADS  Google Scholar 

  160. Reimer, M., Dalacu, D., Lapointe, J., Poole, P., Kim, D., Aers, G., et al.: Single electron charging in deterministically positioned InAs/InP quantum dots. Appl. Phys. Lett. 94, 011108 (2009)

    Article  ADS  Google Scholar 

  161. Dalacu, D., Mnaymneh, K., Sazonova, V., Poole, P.J., Aers, G.C., Lapointe, J., et al.: Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys. Rev. B 82, 033301 (2010)

    Article  ADS  Google Scholar 

  162. Schneider, C., Heindel, T., Huggenberger, A., Niederstrasser, T., Reitzenstein, S., Forchel, A., et al.: Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Appl. Phys. Lett. 100, 091108 (2012)

    Article  ADS  Google Scholar 

  163. Jons, K., Atkinson, P., Muller, M., Heldmaier, M., Ulrich, S., Schmidt, O., et al.: Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett. 13, 126–130 (2012)

    Article  ADS  Google Scholar 

  164. Santori, C., Fattal, D., Vučković, J., Solomon, G.S., Yamamoto, Y.: Indistinguishable photons from a single-photon device. Nature 419, 594 (2002)

    Article  ADS  Google Scholar 

  165. Legero, T., Wilk, T., Hennrich, M., Rempe, G., Kuhn, A.: Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004)

    Article  ADS  Google Scholar 

  166. Kuhlmann, A.V., Houel, J., Ludwig, A., Greuter, L., Reuter, D., Wieck, A.D., et al.: Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570 (2013)

    Article  Google Scholar 

  167. Lagoudakis, K.G., McMahon, P.L., Fischer, K.A., Puri, S., Müller, K., Dalacu, D., et al.: Initialization of a spin qubit in a site-controlled nanowire quantum dot. New J. Phys. 18, 053024 (2016)

    Article  ADS  Google Scholar 

  168. Jeannin, M., Cremel, T., Häyrynen, T., Gregersen, N., Bellet-Amalric, E., Nogues, G., et al.: Enhanced photon extraction from a nanowire quantum dot using a bottom-up photonic shell. Phys. Rev. Appl. 8, 054022 (2017)

    Article  ADS  Google Scholar 

  169. Haffouz, S., Zeuner, K.D., Dalacu, D., Poole, P.J., Lapointe, J., Poitras, D., et al.: Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the role of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018)

    Article  ADS  Google Scholar 

  170. Windischmann, H., Collins, R., Cavese, J.: Effect of hydrogen on the intrinsic stress in ion beam sputtered amorphous silicon films. J. Non Cryst. Solids 85, 261–272 (1986)

    Article  ADS  Google Scholar 

  171. Bouwes Bavinck, M., Zieliński, M., Witek, B.J., Zehender, T., Bakkers, E.P., Zwiller, V.: Controlling a nanowire quantum dot band gap using a straining dielectric envelope. Nano Lett. 12, 6206–6211 (2012)

    Article  ADS  Google Scholar 

  172. Korkusinski, M., Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310 (2013)

    Article  ADS  Google Scholar 

  173. Zieliński, M.: Fine structure of light-hole excitons in nanowire quantum dots. Phys. Rev. B 88, 115424 (2013)

    Article  ADS  Google Scholar 

  174. Jeannin, M., Artioli, A., Rueda-Fonseca, P., Bellet-Amalric, E., Kheng, K., André, R., et al.: Light-hole exciton in a nanowire quantum dot. Phys. Rev. B 95, 035305 (2017)

    Article  ADS  Google Scholar 

  175. Deshpande, S., Das, A., Bhattacharya, P.: Blue single photon emission up to 200 K from an InGaN quantum dot in AlGaN nanowire. Appl. Phys. Lett. 102, 161114 (2013)

    Article  ADS  Google Scholar 

  176. Jarjour, A.F., Taylor, R.A., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Tahraoui, A.: Cavity-enhanced blue single-photon emission from a single InGaN/GaN quantum dot. Appl. Phys. Lett. 91, 052101 (2007)

    Article  ADS  Google Scholar 

  177. Bertness, K.A., Roshko, A., Sanford, N.A., Barker, J., Davydov, A.: Spontaneously grown GaN and AlGaN nanowires. J. Cryst. Growth 287, 522–527 (2006)

    Article  ADS  Google Scholar 

  178. Ristić, J., Calleja, E., Sánchez-García, M.A., Ulloa, J.M., Sánchez-Páramo, J., Calleja, J.M., et al.: Characterization of GaN quantum discs embedded in AxG1−xN nanocolumns grown by molecular beam epitaxy. Phys. Rev. B 68, 125305 (2003)

    Article  ADS  Google Scholar 

  179. Guo, W., Zhang, M., Banerjee, A., Bhattacharya, P.: Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Lett. 10, 3355–3359 (2010)

    Article  ADS  Google Scholar 

  180. Chen, C.-Y., Lu, Y.-C., Yeh, D.-M., Yang, C.: Influence of the quantum-confined Stark effect in an In GaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement. Appl. Phys. Lett. 90, 183114 (2007)

    Article  ADS  Google Scholar 

  181. Holmes, M.J., Choi, K., Kako, S., Arita, M., Arakawa, Y.: Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982–986 (2014)

    Article  ADS  Google Scholar 

  182. Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  183. Singh, R., Bester, G.: Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009)

    Article  ADS  Google Scholar 

  184. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)

    Article  ADS  Google Scholar 

  185. Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 (1999)

    Article  ADS  Google Scholar 

  186. Müller, M., Bounouar, S., Jöns, K.D., Glässl, M., Michler, P.: On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014)

    Article  ADS  Google Scholar 

  187. Jayakumar, H., Predojević, A., Huber, T., Kauten, T., Solomon, G.S., Weihs, G.: Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013)

    Article  ADS  Google Scholar 

  188. Baier, M., Malko, A., Pelucchi, E., Oberli, D., Kapon, E.: Quantum-dot exciton dynamics probed by photon-correlation spectroscopy. Phys. Rev. B 73, 205321 (2006)

    Article  ADS  Google Scholar 

  189. Dousse, A., Suffczyński, J., Beveratos, A., Krebs, O., Lemaître, A., Sagnes, I., et al.: Ultrabright source of entangled photon pairs. Nature 466, 217 (2010)

    Article  ADS  Google Scholar 

  190. Huber, T., Predojevic, A., Khoshnegar, M., Dalacu, D., Poole, P.J., Majedi, H., et al.: Polarization entangled photons from quantum dots embedded in nanowires. Nano Lett. 14, 7107–7114 (2014)

    Article  ADS  Google Scholar 

  191. Jöns, K.D., Schweickert, L., Versteegh, M.A., Dalacu, D., Poole, P.J., Gulinatti, A., et al.: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality. Sci. Rep. 7, 1700 (2017)

    Article  ADS  Google Scholar 

  192. Persson, J., Aichele, T., Zwiller, V., Samuelson, L., Benson, O.: Three-photon cascade from single self-assembled InP quantum dots. Phys. Rev. B 69, 233314 (2004)

    Article  ADS  Google Scholar 

  193. Schmidgall, E., Schwartz, I., Gantz, L., Cogan, D., Raindel, S., Gershoni, D.: Deterministic generation of a quantum-dot-confined triexciton and its radiative decay via three-photon cascade. Phys. Rev. B 90, 241411 (2014)

    Article  ADS  Google Scholar 

  194. Khoshnegar, M., Huber, T., Predojević, A., Dalacu, D., Prilmüller, M., Lapointe, J., et al.: A solid state source of photon triplets based on quantum dot molecules. Nat. Commun. 8, 15716 (2017)

    Article  ADS  Google Scholar 

  195. Akopian, N., Van Weert, M., Van Kouwen, M., Algra, R., Liu, L., Patriarche, G., et al.: Quantum optics with single nanowire quantum dots. In: Quantum Sensing and Nanophotonic Devices VII, p. 76080T (2010)

  196. Akopian, N., Bakkers, E., Harmand, J.C., Heeres, R., Kouwen, M.V., Patriarche, G., et al.: Nanowires for quantum optics. In: 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM), pp. 1–5 (2010)

  197. Bennett, A., Unitt, D., Atkinson, P., Ritchie, D., Shields, A.: High performance single photon sources from photolithographically defined pillar microcavities. Opt. Express 13, 50–55 (2005)

    Article  ADS  Google Scholar 

  198. Wang, H., Duan, Z.-C., Li, Y.-H., Chen, S., Li, J.-P., He, Y.-M., et al.: Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016)

    Article  ADS  Google Scholar 

  199. Leandro, L., Gunnarsson, C.P., Reznik, R., Jöns, K.D., Shtrom, I., Khrebtov, A., et al.: Nanowire quantum dots tuned to atomic resonances. Nano Lett. 18, 7217–7221 (2018)

    Article  ADS  Google Scholar 

  200. Schweickert, L., Jöns, K.D., Zeuner, K.D., Covre da Silva, S.F., Huang, H., Lettner, T., et al.: On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018)

    Article  ADS  Google Scholar 

  201. Zadeh, I.E., Elshaari, A.W., Jöns, K.D., Fognini, A., Dalacu, D., Poole, P.J., et al.: Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett. 16, 2289–2294 (2016)

    Article  ADS  Google Scholar 

  202. Elshaari, A.W., Zadeh, I.E., Fognini, A., Reimer, M.E., Dalacu, D., Poole, P.J., et al.: On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379 (2017)

    Article  ADS  Google Scholar 

  203. Elshaari, A.W., Büyüközer, E., Zadeh, I.E., Lettner, T., Zhao, P., Schöll, E., et al.: Strain-tunable quantum integrated photonics. Nano Lett. 18, 7969–7976 (2018)

    Article  ADS  Google Scholar 

  204. Chen, Y., Zadeh, I.E., Jöns, K.D., Fognini, A., Reimer, M.E., Zhang, J., et al.: Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl. Phys. Lett. 108, 182103 (2016)

    Article  ADS  Google Scholar 

  205. Kremer, P., Dada, A., Kumar, P., Ma, Y., Kumar, S., Clarke, E., et al.: Strain-tunable quantum dot embedded in a nanowire antenna. Phys. Rev. B 90, 201408 (2014)

    Article  ADS  Google Scholar 

  206. Gourgues, R., Zadeh, I.E., Elshaari, A.W., Bulgarini, G., Los, J.W., Zichi, J., et al.: Controlled integration of selected detectors and emitters in photonic integrated circuits. Opt. Express 27, 3710–3716 (2019)

    Article  ADS  Google Scholar 

  207. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  208. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  209. Guha, S., Krovi, H., Fuchs, C.A., Dutton, Z., Slater, J.A., Simon, C., et al.: Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015)

    Article  ADS  Google Scholar 

  210. Azuma, K., Tamaki, K., Lo, H.-K.: All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015)

    Article  ADS  Google Scholar 

  211. Park, Y.-S., Guo, S., Makarov, N.S., Klimov, V.I.: Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015)

    Article  Google Scholar 

  212. Li, Y., Humphreys, P.C., Mendoza, G.J., Benjamin, S.C.: Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015)

    Google Scholar 

  213. Gimeno-Segovia, M., Shadbolt, P., Browne, D.E., Rudolph, T.: From three-photon Greenberger–Horne–Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015)

    Article  ADS  Google Scholar 

  214. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8, 285 (2012)

    Article  Google Scholar 

  215. Peruzzo, A., Lobino, M., Matthews, J.C., Matsuda, N., Politi, A., Poulios, K., et al.: Quantum walks of correlated photons. Science 329, 1500–1503 (2010)

    Article  ADS  Google Scholar 

  216. Rohde, P.P.: Boson sampling with photons of arbitrary spectral structure. Phys. Rev. A 91, 012307 (2015)

    Article  ADS  Google Scholar 

  217. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 11B603 (2008)

    Article  Google Scholar 

  218. Nilsson, J., Stevenson, R., Chan, K., Skiba-Szymanska, J., Lucamarini, M., Ward, M., et al.: Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311 (2013)

    Article  ADS  Google Scholar 

  219. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  220. Pant, M., Krovi, H., Englund, D., Guha, S.: Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Phys. Rev. A 95, 012304 (2017)

    Article  ADS  Google Scholar 

  221. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  222. Yeo, I., De Assis, P.-L., Gloppe, A., Dupont-Ferrier, E., Verlot, P., Malik, N.S., et al.: Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol. 9, 106 (2014)

    Article  ADS  Google Scholar 

  223. Teissier, J., Barfuss, A., Appel, P., Neu, E., Maletinsky, P.: Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett. 113, 020503 (2014)

    Article  ADS  Google Scholar 

  224. Ovartchaiyapong, P., Lee, K.W., Myers, B.A., Jayich, A.C.B.: Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014)

    Article  ADS  Google Scholar 

  225. Tiarks, D., Baur, S., Schneider, K., Dürr, S., Rempe, G.: Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014)

    Article  ADS  Google Scholar 

  226. Hwang, J., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., Götzinger, S., et al.: A single-molecule optical transistor. Nature 460, 76 (2009)

    Article  ADS  Google Scholar 

  227. Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., et al.: A single-atom transistor. Nat. Nanotechnol. 7, 242 (2012)

    Article  ADS  Google Scholar 

  228. Shomroni, I., Rosenblum, S., Lovsky, Y., Bechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014)

    Article  ADS  Google Scholar 

  229. Sinclair, N., Saglamyurek, E., Mallahzadeh, H., Slater, J.A., George, M., Ricken, R., et al.: Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014)

    Article  ADS  Google Scholar 

  230. Stevenson, R., Nilsson, J., Bennett, A., Skiba-Szymanska, J., Farrer, I., Ritchie, D., et al.: Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nat. Commun. 4, 2859 (2013)

    Article  ADS  Google Scholar 

  231. Khanaliloo, B., Jayakumar, H., Hryciw, A.C., Lake, D.P., Kaviani, H., Barclay, P.E.: Single-crystal diamond nanobeam waveguide optomechanics. Phys. Rev. X 5, 041051 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram MohammadNejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, H., MohammadNejad, S., KhodadadKashi, A. et al. Recent advances in nanowire quantum dot (NWQD) single-photon emitters. Quantum Inf Process 19, 44 (2020). https://doi.org/10.1007/s11128-019-2542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2542-9

Keywords

Navigation