Skip to main content
Log in

Quantum version of MMSE-based massive MIMO uplink detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Regarding the massive multiple-input multiple-output (MIMO) uplink, the quantum version detection based on the minimum mean square error criterion is developed for complexity consideration. Specifically, a comprehensive quantum algorithm for encoding the estimated signal into a quantum state is presented, synthesizing the subroutines of state preparation, Hamiltonian simulation, phase estimation and so on. Indispensable assumptions along with the quantum algorithm are summarized and assumption testing in a MIMO scenario is conducted. Both theoretical analyses from the mathematical point of view and simulated realizations in massive MIMO systems basically confirm the applicability of the quantum algorithm. With desired precision, the quantum algorithm achieves almost quadratic speedup over all classical counterparts. Whereas, with weaker precision accompanied by undetermined performance loss, the quantum algorithm eventually breaks through polynomial-time detection complexity and achieves exponential speedup. Future work will be directed toward the error dependence improvement, classical form outputs and experimental applications in quantum communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [7]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H.M., Haas, H., Fletcher, S., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)

    Article  Google Scholar 

  2. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590 (2010)

    Article  Google Scholar 

  3. Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)

    Article  ADS  Google Scholar 

  4. Marzetta, T.L., Larsson, E.G., Edfors, O., Tufvesson, F.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  5. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)

    Article  ADS  Google Scholar 

  6. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  7. Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun. Surv. Tutor. 17(4), 1941–1988 (2015)

    Article  Google Scholar 

  8. Verdu, S.: Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. Inf. Theory 32(1), 85–96 (1986)

    Article  MathSciNet  Google Scholar 

  9. van Etten, W.: An optimum linear receiver for multiple channel digital transmission systems. IEEE Trans. Commun. 23(8), 828–834 (1975)

    Article  Google Scholar 

  10. Shnidman, D.: A generalized Nyquist criterion and an optimum linear receiver for a pulse modulation system. Bell Syst. Tech. J. 46(9), 2163–2177 (1967)

    Article  Google Scholar 

  11. Prabhu, H., Rodrigues, J., Edfors, O., Rusek, F.: Approximative matrix inverse computations for very-large MIMO and applications to linear pre-coding systems. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC) 2013, pp. 2710–2715. IEEE

  12. Ji, Y., Wu, Z., Shen, Y., Lin, J., Zhang, Z., You, X., Zhang, C.: A low-complexity massive MIMO detection algorithm based on matrix partition. In: 2018 IEEE International Workshop on Signal Processing Systems (SiPS) 2018, pp. 158–163. IEEE

  13. Zhang, C., Liang, X., Wu, Z., Wang, F., Zhang, S., Zhang, Z., You, X.: On the low-complexity, hardware-friendly tridiagonal matrix inversion for correlated massive MIMO systems. IEEE Trans. Veh. Technol. 68(7), 6272–6285 (2019)

    Article  Google Scholar 

  14. Yin, B., Wu, M., Cavallaro, J.R., Studer, C.: Conjugate gradient-based soft-output detection and precoding in massive MIMO systems. In: 2014 IEEE Global Communications Conference (GLOBECOM) 2014, pp. 3696–3701. IEEE

  15. Wu, Z., Ge, L., You, X., Zhang, C.: Efficient near-MMSE detector for large-scale MIMO systems. In: 2017 IEEE International Workshop on Signal Processing Systems (SiPS) 2017, pp. 1–6. IEEE

  16. Wu, M., Dick, C., Cavallaro, J.R., Studer, C.: FPGA design of a coordinate descent data detector for large-scale MU-MIMO. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS) 2016, pp. 1894–1897. IEEE

  17. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  18. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS) 1994, pp. 124–134. IEEE Computer Society

  19. Grover, L.K.: A fast quantum mechanical algorithm for database search. arXiv:quant-ph/9605043 (1996)

  20. Yu, C.-H., Gao, F., Wang, Q.-L., Wen, Q.-Y.: Quantum algorithm for association rules mining. Phys. Rev. A 94(4), 042311 (2016)

    Article  ADS  Google Scholar 

  21. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  22. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  24. Schuld, M., Sinayskiy, I., Petruccione, F.: Pattern classification with linear regression on a quantum computer. arXiv:1601.07823 (2016)

  25. Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A 96(1), 012335 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, Y., Zhang, S.: Fast quantum algorithms for least squares regression and statistic leverage scores. Theor. Comput. Sci. 657(PA), 38–47 (2017)

    Article  MathSciNet  Google Scholar 

  27. Yu, C.-H., Gao, F., Wen, Q.: An improved quantum algorithm for ridge regression. IEEE Trans. Knowl. Data Eng. (2019). https://doi.org/10.1109/TKDE.2019.2937491

  28. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC) 2003, pp. 20–29. ACM

  30. Berry, D.W., Childs, A.M.: Black-box Hamiltonian simulation and unitary implementation. Quantum Inf. Comput. 12(1–2), 29–62 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  32. Rebentrost, P., Steffens, A., Marvian, I., Lloyd, S.: Quantum singular-value decomposition of non-sparse low-rank matrices. Phys. Rev. A 97(1), 012327 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. Imre, S., Balázs, F.: Non-coherent multi-user detection based on quantum search. In: 2002 IEEE International Conference on Communications (ICC) 2002, pp. 283–287. IEEE

  34. Botsinis, P., Ng, S.X., Hanzo, L.: Fixed-complexity quantum-assisted multi-user detection for CDMA and SDMA. IEEE Trans. Commun. 62(3), 990–1000 (2014)

    Article  Google Scholar 

  35. Botsinis, P., Alanis, D., Babar, Z., Ng, S.X., Hanzo, L.: Iterative quantum-assisted multi-user detection for multi-carrier interleave division multiple access systems. IEEE Trans. Commun. 63(10), 3713–3727 (2015)

    Article  Google Scholar 

  36. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  37. Hogben, L.: Handbook of Linear Algebra. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  38. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78(5), 052310 (2008)

    Article  ADS  Google Scholar 

  39. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions. arXiv:quant-ph/0208112 (2002)

  42. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454(1969), 339–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. arXiv:quant-ph/0005055 (2000)

  44. Haykin, S.S.: Communication Systems. Wiley, Hoboken (1978)

    Google Scholar 

  45. Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1(2), 41–59 (1996)

    Article  Google Scholar 

  46. Tulino, A.M., Verdú, S.: Random matrix theory and wireless communications. Found. Trends Commun. Inf. Theory 1(1), 1–182 (2004)

    Article  Google Scholar 

  47. Wang, C.: Marcenko–Pastur distribution and McKay’s law. In: Wang, C. (ed.) Application of Integrable Systems to Phase Transitions, pp. 161–189. Springer, Berlin (2013)

    Chapter  Google Scholar 

  48. Kermoal, J.-P., Schumacher, L., Pedersen, K.I., Mogensen, P.E., Frederiksen, F.: A stochastic MIMO radio channel model with experimental validation. IEEE J. Sel. Areas Commun. 20(6), 1211–1226 (2002)

    Article  Google Scholar 

  49. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  MathSciNet  Google Scholar 

  50. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC under Grants 61871115 and 61501116, in part by the Jiangsu Provincial NSF for Excellent Young Scholars under Grant BK20180059, in part by the Six Talent Peak Program of Jiangsu Province under Grant 2018-DZXX-001, in part by the Distinguished Perfection Professorship of Southeast University, in part by the Fundamental Research Funds for the Central Universities, in part by the SRTP of Southeast University, and in part by the Project Sponsored by the SRF for the Returned Overseas Chinese Scholars of MoE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xutao Yu or Chuan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We start with the following lemma.

Lemma 1

Given a complex linear system of equations \({\mathbf {A}}{\mathbf {x}}={\mathbf {b}}\) where \({\mathbf {A}}\) is \(M\times M\), write \({\mathbf {b}}\) as \({\mathbf {b}}=\sum _{j=1}^M\beta _j\varvec{\eta }_j\) where \(\varvec{\eta }_j\) is the eigenvector of \({\mathbf {A}}\) corresponding to the eigenvalue \(\lambda _j\) and \(\beta _j=\varvec{\eta }_j^H\cdot {\mathbf {b}}\). Then \({\mathbf {x}}\) can be rephrased as \({\mathbf {x}}=\sum _{j=1}^M\beta _j\lambda _j^{-1}\varvec{\eta }_j\).

Proof

Since \(\lambda _j\) and \(\varvec{\eta }_j\) satisfy \({\mathbf {A}}\varvec{\eta }_j=\lambda _j\varvec{\eta }_j\), multiply \({\mathbf {A}}^{-1}\) at both left sides of this equation and obtain \(\lambda _j^{-1}\varvec{\eta }_j={\mathbf {A}}^{-1}\varvec{\eta }_j\). Analogously, multiply \({\mathbf {A}}^{-1}\) at both left sides of \({\mathbf {A}}{\mathbf {x}}=\sum _{j=1}^M\beta _j\varvec{\eta }_j\) and obtain \({\mathbf {x}}=\sum _{j=1}^M\beta _j\lambda _j^{-1}\varvec{\eta }_j\). Hereto, Lemma 1 has been proved. \(\square \)

Defining \({\mathbf {W}}={\mathbf {H}}^H{\mathbf {H}}+\alpha {\mathbf {I}}_M\) and applying Eq. (4), we can obtain

$$\begin{aligned} \begin{aligned} {\mathbf {W}}&=\left( \sum _{j=1}^r\lambda _j{\mathbf {v}}_j{{\mathbf {u}}_j}^H\right) \cdot \left( \sum _{j=1}^r\lambda _j{\mathbf {u}}_j{{\mathbf {v}}_j}^H\right) +\alpha {\mathbf {I}}_M\\&=\sum _{j=1}^r\lambda _j^2{\mathbf {v}}_j{\mathbf {v}}_j^H+\alpha \sum _{j=1}^r{\mathbf {v}}_j{\mathbf {v}}_j^H =\sum _{j=1}^r(\lambda _j^2+\alpha ){\mathbf {v}}_j{\mathbf {v}}_j^H. \end{aligned} \end{aligned}$$
(38)

Defining \({\mathbf {y}}^{\text {MF}}={\mathbf {H}}^H{\mathbf {y}}\) and applying Eq. (5), we can obtain

$$\begin{aligned} \begin{aligned} {\mathbf {y}}^{\text {MF}}&=\left( \sum _{j=1}^r\lambda _j{\mathbf {v}}_j{{\mathbf {u}}_j}^H\right) \cdot \left( \Vert {\mathbf {y}}\Vert \sum _{j=1}^N\beta _j{\mathbf {u}}_j\right) =\Vert {\mathbf {y}}\Vert \sum _{j=1}^r\beta _j\lambda _j{\mathbf {v}}_j. \end{aligned} \end{aligned}$$
(39)

Applying Lemma 1, we derive

$$\begin{aligned} {\hat{\mathbf {s}}}={\mathbf {W}}^{-1}{\mathbf {y}}^{\text {MF}} =\Vert {\mathbf {y}}\Vert \sum _{j=1}^r\frac{\lambda _j}{{\lambda _j}^2+\alpha }\beta _j{\mathbf {v}}_j. \end{aligned}$$
(40)

Hereto, Eq. (6) has been proved.

Appendix B

Proof of \(Ch(\lambda _j,\alpha )={\varOmega }(1/\kappa )\) is adapted from [27] for the convenience of readers.

Based on \(h(\lambda ,\alpha )=\frac{\lambda }{\lambda ^2+\alpha }\) with \(\frac{\lambda _{\text {max}}}{\lambda _{\text {min}}}=\kappa \), it can be obtained that

$$\begin{aligned} \begin{aligned}&\frac{\mathop {\max }_{\lambda }h(\lambda ,\alpha )}{\mathop {\min }_{\lambda }h(\lambda ,\alpha )} =\mathop {\max }_{\lambda _1,\lambda _2}\frac{h(\lambda _1,\alpha )}{h(\lambda _2,\alpha )} =\frac{\lambda _1(\lambda _2^2+\alpha )}{\lambda _2(\lambda _1^2+\alpha )}\\&\quad \le \frac{\lambda _1}{\lambda _2}\left( \frac{\lambda _2^2}{\lambda _1^2}+1\right) =\frac{\lambda _2}{\lambda _1}+\frac{\lambda _1}{\lambda _2} \le \kappa +\frac{1}{\kappa }=O(\kappa ). \end{aligned} \end{aligned}$$
(41)

Hence, \(C=O(\mathop {\max }_{\lambda _j}h(\lambda _j,\alpha ))^{-1}\) makes \(Ch(\lambda _j,\alpha )={\varOmega }(1/\kappa )\).

Appendix C

Proof of \(\epsilon _r=O(\kappa \epsilon )\) regardless of \(\alpha \) is adapted from [27] for the convenience of readers.

The relative error of \(h(\lambda ,\alpha )\) scales as \(O(|g(\lambda )|\epsilon _{\lambda })\), where

$$\begin{aligned} g(\lambda )=\frac{h^{'}(\lambda ,\alpha )}{h(\lambda ,\alpha )}=\frac{\alpha -\lambda ^2}{\lambda (\lambda ^2+\alpha )} \end{aligned}$$
(42)

is defined and \(\epsilon _{\lambda }=(N+M)\epsilon \) is the absolute error of \(\lambda \). Since

$$\begin{aligned} g^2(\lambda )-\frac{1}{\lambda ^2}=\frac{-4\alpha }{(\lambda ^2+\alpha )^2}<0, \end{aligned}$$
(43)

\(|g(\lambda )|<\frac{1}{\lambda }\) is promised. Thus, the relative error of \(h(\lambda ,\alpha )\) roughly scales as \(\epsilon _r=O(\frac{1}{\lambda }(N+M)\epsilon )=O(\frac{\epsilon }{\lambda /(N+M)})=O(\kappa \epsilon )\), where \(O(\frac{1}{\lambda /(N+M)})=O(\kappa )\) is easily obtained according to Assumption 4.

Appendix D

Denote X and Y as the length and the length squared of a complex Gaussian variable, respectively. Since the length of a complex Gaussian variable with zero mean and unit variance obeys Rayleigh distribution whose pdf is

$$\begin{aligned} f_{X}(x)= {\left\{ \begin{array}{ll} 2xe^{-x^2}&{}x\ge 0\\ 0&{} \text {otherwise} \end{array}\right. }, \end{aligned}$$
(44)

the pdf of the length squared can be straightly derived as

$$\begin{aligned} f_{Y}(y)= {\left\{ \begin{array}{ll} e^{-y}&{}y\ge 0\\ 0&{} \text {otherwise} \end{array}\right. }. \end{aligned}$$
(45)

Then \(E\{Y\}\) can be easily obtained by

$$\begin{aligned} E\{Y\}=\int _{-\infty }^{+\infty }yf_{Y}(y)\mathrm{d}y=\int _{0}^{+\infty }ye^{-y}\mathrm{d}y=1. \end{aligned}$$
(46)

Denote \(Y_m\) as the maximal length squared during an observation consisting of N i.i.d. complex Gaussian variables. The exact pdf of \(Y_m\) is hard to determine, which means \(E\{Y_m\}\) cannot be solved by \(E\{Y_m\}=\int _{-\infty }^{+\infty }y_mf_{Y_m}(y_m)\mathrm{d}y_m\).

We can treat this problem from another perspective. Primarily, the CDF of Y can be easily derived as

$$\begin{aligned} F_{Y}(y)=\int _{-\infty }^{y}f_{Y}(y)\mathrm{d}y= {\left\{ \begin{array}{ll} 1-e^{-y}&{}y\ge 0\\ 0&{} \text {otherwise} \end{array}\right. }. \end{aligned}$$
(47)

Typically, for \(y_0>0\), \(p_0\) is defined as

$$\begin{aligned} p_0=P(Y\le y_0)=1-e^{-y_0}. \end{aligned}$$
(48)

During an observation consisting of N variables, the probability of the event that all of N variables have a length squared no more than \(y_0\) is given by

$$\begin{aligned} p={p_0}^N=(1-e^{-y_0})^N. \end{aligned}$$
(49)

Naturally, p will decrease as \(y_0\) becomes large. If \(y_0\) is large enough to make the probability p reduce to 1/2, i.e.,

$$\begin{aligned} (1-e^{-y_0})^N=\frac{1}{2}, \end{aligned}$$
(50)

then \(y_0\) can be roughly viewed as an approximation of \(E\{Y_m\}\), which reveals the expression

$$\begin{aligned} E\{Y_m\}=-\ln {\left[ 1-\left( \frac{1}{2}\right) ^{\frac{1}{N} }\right] }. \end{aligned}$$
(51)

Combining Eqs. (46), (51) and (25), the empirical formula is yielded as

$$\begin{aligned} E\{P\}=-\frac{1}{\ln {\left[ 1-\left( \frac{1}{2}\right) ^{\frac{1}{N} }\right] }}. \end{aligned}$$
(52)

Hereto, Eq. (26) has been proved.

Appendix E

By reviewing the previous part of the paper, it can be observed that only the proof in “Appendix C” is based on Assumption 4, which is directly relevant to the total complexity. Thus, we need to modify the proof in “Appendix C” based on the realistic case \(\frac{\lambda _j}{\sqrt{N+M}}\in [k_a/\kappa ,k_a]\).

Since \(\epsilon _r=O(\frac{\epsilon }{\lambda /(N+M)})=O(\kappa \epsilon \sqrt{N+M})\) is updated, the absolute error of \(h(\lambda ,\alpha )\), which satisfies \(\epsilon _r=\epsilon _h/h(\lambda ,\alpha )\), scales as

$$\begin{aligned} \begin{aligned} \epsilon _h&=h(\lambda ,\alpha )\epsilon _r=O\left( \kappa \epsilon \frac{\sqrt{N+M}\lambda }{\lambda ^2+\alpha }\right) \\&= O\left( \frac{\kappa \epsilon }{\lambda /\sqrt{N+M}+\alpha /(\lambda \sqrt{N+M})}\right) =O(\kappa ^2\epsilon ). \end{aligned} \end{aligned}$$
(53)

As a consequence, the total complexity is modified as \(O\left( \text {poly} \log {(N+M)}\kappa ^5/\epsilon ^3\right) \) where \(\epsilon \) is the absolute error of \(h(\lambda ,\alpha )\). Hereto, Theorem 3 has been proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Meng, F., Jin, J. et al. Quantum version of MMSE-based massive MIMO uplink detection. Quantum Inf Process 19, 67 (2020). https://doi.org/10.1007/s11128-019-2547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2547-4

Keywords

Navigation