Skip to main content
Log in

Quantum implementation of classical Marr–Hildreth edge detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Edge detection is a fundamental task in digital image processing. Marr–Hildreth edge detection is the basic tool for implementing edge detection in classic image processing. This paper studies the quantum version of the classical Marr–Hildreth edge detection, which includes two core processes: Gaussian–Laplacian filtering and zero-crossing extraction. Based on the sampling results of the Gaussian–Laplace function, Gaussian–Laplacian filtering is implemented directly using quantum multipliers and quantum adders. Zero-crossing extraction is achieved using several quantum comparators. The quantum circuits of these two core processes with several auxiliary operators are designed in detail. Complexity analysis shows that the quantum Marr–Hildreth edge detection has exponential speedup compared to its classical counterpart. The simulation on the classical computer verifies the correctness of the quantum Marr–Hildreth edge detection results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Beach, G., Dr. Lomont, C., Dr. Cohen, C.: Quantum image processing (QuIP). In: Proceedings of the 32nd IEEE Conference on Applied Imagery and Pattern Recognition, pp. 39–44, Bellingham (2003)

  2. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001-(1–18) (2017)

    Article  MathSciNet  Google Scholar 

  3. Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, vol. 5105, pp. 134–147 (2003)

  4. Latorre, J.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  5. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  6. Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. N. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011)

    Google Scholar 

  7. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404–417 (2013)

    Article  Google Scholar 

  9. Sun, B., Le, P., Iliyasu, A., Yan, F., Garcia, J., Dong, F., Hirota, K.: Amulti-channel representation for images on quantum computers using the RGB color space. In: IEEE 7th International Symposium on Intelligent Signal Processing (WISP), pp. 1–6 (2011)

  10. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jiang, N., Wu, W.Y., Wang, J.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  Google Scholar 

  15. Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum image based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  16. Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Abdullah, M., Iliyasu, P.C., Le, Q., Dong, F.Y., et al.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)

    Article  Google Scholar 

  18. Yan, F., Iliyasu, A.M., Guo, Y.M., Yang, H.M.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15(9), 3543–3572 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jiang, N., Dang, Y., Zhao, N.: Quantum image location. Int. J. Theor. Phys. 55(10), 4501–4512 (2016)

    Article  Google Scholar 

  21. Le, P.Q., Iliyasuy, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  Google Scholar 

  22. Jiang, N., Wu, W.Y., Wang, L., et al.: Quantum image pseudo color coding based on the density-stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Simona, C., Vasile, I.M.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chris, L.: Quantum convolution and quantum correlation algorithms are physically impossible. arXiv:quant-ph/0309070, pp. 1–10 (2003)

  26. Fan, P., Zhou, R.G., Hu, W.W., Jiang, N.H.: Quantum image edge extraction based on Laplacian operator and zero-cross method. Quantum Inf. Process. 18, 27 (2019)

    Article  ADS  Google Scholar 

  27. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, pp. 736–739. Pearson Education Inc., London (2010)

    Google Scholar 

  28. Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  29. Vefral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  30. Li, P.C., Wang, B., Xiao, H., Liu, X.D.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(10), 3242–3270 (2018)

    Article  Google Scholar 

  31. Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  32. Gonzalez, Woods, Eddins: Image processing place. http://www.prenhall.com/gonzalezwoods

  33. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(012106), 1–13 (2014)

    MATH  Google Scholar 

  34. Yao, X.W., Wang, H., Liao, Z., et al.: Quantum image processing and its application to edge detection: theory and experiment. Phys. Rev. X 7(031041), 1–14 (2017). https://doi.org/10.1103/PhysRevX.7.031041

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Science Foundation of Northeast Petroleum University (Grant No. 2018QNL-08), and the Guiding Innovation Fund of Northeast Petroleum University (Grant No. 2018YDL-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Shi, T., Lu, A. et al. Quantum implementation of classical Marr–Hildreth edge detection. Quantum Inf Process 19, 64 (2020). https://doi.org/10.1007/s11128-019-2559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2559-0

Keywords

Navigation