Skip to main content
Log in

Recovery of quantum information from a node failure in a graph

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement is a well-known quantum way of introducing redundancy in quantum error correcting codes. The unitary interactions when modeled using edges of a graph with qubits as nodes give rise to a quantum graph state. Quantum graph states are highly entangled quantum states created using specific unitary interactions between qubits. We consider the problem of failure of a node of the graph. The node failure leads to the loss of one of the qubits of the graph state, resulting in a mixed state. In order to restore the quantum information originally stored in the graph state, we devise a mechanism to purify the mixed state via a unitary operation, followed by measurement. We propose a modification to the existing graph state and call it a modified graph state. This improves the error correction ability of the graph state, and it is able to correct single bit flip errors ensuing after the measurement stage. Using this modified graph state code, our procedure recovers the quantum information in the graph in the event of one node failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Without loss of generality, we assume the message node to be node 1 since we are considering single message qubit in this paper.

References

  1. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M., Ramchandran, K.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–4551 (2010)

    Article  Google Scholar 

  2. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Nest, M.V., Briegel, H.J.: Entanglement in graph states and its applications. In: Proceedings of the International School of Physics “Enrico Fermi” on Quantum Computers, Algorithms and Chaos, vol. 162 (2006)

  3. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  5. Bell, B.A., Herrera-Martí, D.A., Tame, M.S., Markham, D., Wadsworth, W.J., Rarity, J.G.: Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014)

    Article  ADS  Google Scholar 

  6. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  7. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  8. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. Steane, A.M.: Simple quantum error-correcting codes. Phys. Rev. A 54, 4741 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Knill, E., Lafamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  12. Almlöf, J., Björk, G.: A short and efficient quantum-erasure code for polarization-coded photonic qubits. In: European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich (2009)

  13. Yang, C.-P., Chu, S.-I., Han, S.: A small error-correction code for protecting three-qubit quantum information. Pis’ma v Zh. Eksper. Teoret. Fiz. 79(5), 291–295 (2004)

    Google Scholar 

  14. Varnava, M., Browne, D.E., Rudolph, T.: Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97(12), 120501 (2006)

    Article  ADS  Google Scholar 

  15. Vala, J., Whaley, K.B., Weiss, D.S.: Quantum error correction of a qubit loss in an addressable atomic system. Phys. Rev. A 72(5), 052318 (2005)

    Article  ADS  Google Scholar 

  16. Nadkarni, P.J., Raina, A., Garani, S.S.: Recovery of distributed quantum information from a node failure using graph states. In: Quantum Communication and Information Technology Workshop, IEEE Globecom, Singapore (2017)

  17. Raina, A., Nadkarni, P.J., Garani, S.S.: Recovery of distributed quantum information in quantum networks. In: Frontiers in Optics. Optical Society of America, Washington, DC (2017)

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  19. Klienmann, M., Kampermann, H., Meyer, T., Druß, D.: Purification of quantum states. Phys. Rev. A 73, 062309 (2006)

    Article  ADS  Google Scholar 

  20. Yang, F., Cong, S.: Purification of mixed state for two-dimensional systems via interaction control. In: International Conference on Intelligent System Design and Engineering Application (2010)

  21. Ping, Y., Li, H., Pan, X., Zhang, Z.: Optimal purification of arbitrary quantum mixed states. Int. J. Theor. Phys. 52, 4367–4373 (2013)

    Article  MathSciNet  Google Scholar 

  22. DiFranco, C., Paternostro, M.: A no-go result on the purification of quantum states. Nat. Sci. Rep. 3, 1387 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

S. S. Garani acknowledges the IISc start-up grant. A. Raina and P. J. Nadkarni are supported by fellowships from the Ministry of Human Resource Development and the Ministry of Electronics and IT, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayan Srinivasa Garani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, A., Nadkarni, P.J. & Garani, S.S. Recovery of quantum information from a node failure in a graph. Quantum Inf Process 19, 70 (2020). https://doi.org/10.1007/s11128-019-2564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2564-3

Keywords

Navigation