Skip to main content
Log in

Entanglement transmission through turbulent atmosphere for modes of Gaussian beam

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Transmission of entangled state through turbulent atmosphere is studied. The qubits are encoded by modes of the Gaussian beam. The quality of the entanglement transmission is estimated using the distance between the density matrix and the subspace of non-entangled states. It is shown that the values of the distances depend on chosen modes numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitschke, F.: Fiber Optics: Physics and Technology. Springer, Berlin (2009)

    Google Scholar 

  2. Hübel, H., Vanner, M.R., Lederer, T., Blauensteiner, B., Lorunser, T., Poppe, A., Zeilinger, A.: High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. Opt. Express 15, 7853–7862 (2007)

    Article  ADS  Google Scholar 

  3. Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  4. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  5. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018). https://doi.org/10.1038/lsa.2017.146

    Article  Google Scholar 

  6. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. N. J. Phys. 4, 43 (2002)

    Article  Google Scholar 

  7. Yin, Juan, Ren, Ji-Gang, He, Lu, Cao, Yuan, Yong, Hai-Lin, Yu-Ping, Wu, Liu, Chang, Liao, Sheng-Kai, Zhou, Fei, Jiang, Yan, Cai, Xin-Dong, Ping, Xu, Pan, Ge-Sheng, Jia, Jian-Jun, Huang, Yong-Mei, Yin, Hao, Wang, Jian-Yu., Chen, Yu-Ao, Peng, Cheng-Zhi, Pan, Jian-Wei: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

    Article  ADS  Google Scholar 

  8. Berman, G.P., Chumak, A.A., Gorshkov, V.N.: Beam wandering in the atmosphere: The effect of partial coherence. Phys. Rev. E 76, 056606 (2007)

    Article  ADS  Google Scholar 

  9. Banakh, V.A., Falits, A.V.: Turbulent broadening of Laguerre–Gaussian beam in the atmosphere. Opt. Spectrosc. 2014(117), 942–948 (2014)

    Article  ADS  Google Scholar 

  10. Wang, Fei, Liu, Xianlong, Cai, Yangjian: Propagation of partially coherent beam in turbulent atmosphere: a review. Progress Electromag. Res. 150, 123–143 (2015)

    Article  Google Scholar 

  11. Bohmann, M., Semenov, A.A., Sperling, J., Vogel, W.: Gaussian entanglement in the turbulent atmosphere. Phys. Rev. A 94, 010302 (2016)

    Article  ADS  Google Scholar 

  12. Faleeva, M.P., Popov, I.Y., Zezula, I.: On quantitative determination of the degree of independence of qubit transformation by a quantum gate or channel. Opt. Spectrosc. 124(5), 720–725 (2018)

    Article  ADS  Google Scholar 

  13. Andrews, L.C., Phillips, R.L.: Laser beam propagation through random media. SPIE Press, Bellingham (2005)

    Book  Google Scholar 

  14. Vasylyev, DYu., Semenov, A.A., Vogel, W.: Toward global quantum communication: beam wandering preserves nonclassicality. Phys. Rev. Lett. 108, 220501 (2012)

    Article  ADS  Google Scholar 

  15. Vasylyev, DYu., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117, 090501 (2016)

    Article  ADS  Google Scholar 

  16. Herbst, T., Scheidl, T., Fink, M., Handsteiner, J., Wittmann, B., Ursin, R., Zeilinger, A.: Teleportation of entanglement over 143 km. PNAS 112, 14202–14205 (2015)

    Article  ADS  Google Scholar 

  17. Miroshnichenko, G.P.: Linear optical quantum computing. Nanosyst. Phys. Chem. Math. 3(4), 36–53 (2012)

    MathSciNet  Google Scholar 

  18. Gavrilov, M.I., Gortinskaya, L.V., Pestov, A.A., Popov, IYu., Tesovskaya, E.S.: Quantum computer elements based on coupled quantum waveguides. Phys. Part. Nucl. Lett. 4(2), 237–243 (2007)

    Article  Google Scholar 

  19. Sheremetev, V.O., Rudenko, A.S., Trifanov, A.I.: Testing Bell inequalities for multi-partite systems with frequency-encoded photonic qubits. Nanosyst. Phys. Chem. Math. 9(4), 484–490 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Popov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially financially supported by Grant 08-08 from the Government of the Russian Federation, by Grant 16-11-10330 from Russian Science Foundation, and by Grant 19-31-27001 of Russian Foundation for Basic Researches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faleeva, M., Popov, I. Entanglement transmission through turbulent atmosphere for modes of Gaussian beam. Quantum Inf Process 19, 72 (2020). https://doi.org/10.1007/s11128-019-2569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2569-y

Keywords

Navigation