Skip to main content
Log in

Improved lower bounds of concurrence and convex-roof extended negativity based on Bloch representations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement plays significant roles in quantum information processing. Estimating quantum entanglement is an essential and difficult problem in the theory of quantum entanglement. We study two main measures of quantum entanglement: concurrence and convex-roof extended negativity. Based on the improved separability criterion from the Bloch representation of density matrices, we derive analytical lower bounds of the concurrence and the convex-roof extended negativity for arbitrary dimensional bipartite quantum systems. We show that these bounds are better than some of the existing ones by detailed examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  2. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  4. DiVincenzo, D.P.: Quantum computation. Science 270, 255 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Albeverio, S., Fei, S.M., Yang, Y.L.: Optimal teleportation based on Bell measurement. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Funchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56, 1163 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  11. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  12. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootter, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  14. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)

    Article  ADS  Google Scholar 

  15. Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Shen, S.Q., Yu, J., Li, M., Fei, S.M.: Improved separability criteria based on Bloch representation of density matrices. Sci. Rep. 6, 28850 (2016)

    Article  ADS  Google Scholar 

  18. Chen, W., Fei, S.M., Zheng, Z.J.: Lower bound on concurrence for arbitrary-dimensional tripartite quantum states. Quantum Inf. Process. 15, 3761 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhu, X.N., Li, M., Fei, S.M.: A lower bound of concurrence for multipartite quantum systems. Quantum Inf. Process. 17, 30 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)

    Article  ADS  Google Scholar 

  21. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Rev. A 232, 333 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Huber, M., de Vicente, J.I.: Structure of multidimensional entanglement in multipartite systems. Phys. Rev. Lett. 110, 030501 (2013)

    Article  ADS  Google Scholar 

  23. Huber, M., Perarnau-Llobet, M., de Vicente, J.I.: Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Phys. Rev. A 88, 042328 (2013)

    Article  ADS  Google Scholar 

  24. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gühne, O., Töth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transitions. Nature (London) 416, 608 (2002)

    Article  ADS  Google Scholar 

  27. Ghosh, S., Rosenbaum, T.F., Aeppli, G., Coppersmith, S.N.: Entangled quantum state of magnetic dipoles. Nature (London) 425, 48 (2003)

    Article  ADS  Google Scholar 

  28. Vedral, V.: Quantum physics: entanglement hits the big time. Nature (London) 425, 28 (2003)

    Article  ADS  Google Scholar 

  29. Zhu, X.N., Zhao, M.J., Fei, S.M.: Lower bound of multipartite concurrence based on subquantum state decomposition. Phys. Rev. A 86, 022307 (2012)

    Article  ADS  Google Scholar 

  30. Zhang, C.J., Yu, S.X., Chen, Q., Yuan, H.D., Oh, C.H.: Evaluation of entanglement measures by a single observable. Phys. Rev. A 94, 042325 (2016)

    Article  ADS  Google Scholar 

  31. Gao, X.H., Fei, S.M., Wu, K.: Lower bounds of concurrence for tripartite quantum systems. Phys. Rev. A 74, 050303 (2006)

    Article  ADS  Google Scholar 

  32. Yu, C., Song, H.S.: Measurable entanglement for tripartite quantum pure states of qubits. Phys. Rev. A 76, 022324 (2007)

    Article  ADS  Google Scholar 

  33. Gao, X.H., Fei, S.M.: Estimation of concurrence for multipartite mixed states. Phys. J. Spec. Top. 71, 159 (2008)

    Google Scholar 

  34. Chen, Z.-H., Ma, Z.-H., Gühne, O., Severini, S.: Estimating entanglement monotones with a generalization of the Wootters formula. Phys. Rev. Lett. 109, 200503 (2012)

    Article  ADS  Google Scholar 

  35. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  36. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Li, M., Yan, T.J., Fei, S.M.: Entanglement detection and lower bound of the convex-roof extension of the negativity. J. Phys. A 45, 035301 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC Nos. 11775306, 11701568 and 11675113; the Fundamental Research Funds for the Central Universities Grants Nos. 19CX02050A, and 17CX02033A; the Shandong Provincial Natural Science Foundation Nos. ZR2016AQ06, and ZR2017BA019; and a project sponsored by SRF for ROCS, SEM; and NSF of Beijing under No. KZ201810028042 and No. Z190005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, Z., Wang, J. et al. Improved lower bounds of concurrence and convex-roof extended negativity based on Bloch representations. Quantum Inf Process 19, 130 (2020). https://doi.org/10.1007/s11128-020-02624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02624-6

Keywords

Navigation