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Abstract

We derive explicitly the thermal state of the two coupled harmonic oscillator system when the

spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case

of sudden change of frequencies. In this case we compute purity function, Rényi and von Neumann

entropies, and mutual information analytically and examine their temperature-dependence. We

also discuss on the thermal entanglement phase transition by making use of the negativity-like

quantity. Our calculation shows that the critical temperature Tc increases with increasing the

difference between the initial and final frequencies. In this way we can protect the entanglement

against the external temperature by introducing large difference of initial and final frequencies.
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I. INTRODUCTION

Entanglement[1–3] is a key physical resource in quantum information processing. For

example, it plays crucial role in quantum teleportation[4], superdense coding[5], quantum

cloning[6], quantum cryptography[7, 8], quantum metrology[9], and quantum computer[10,

11]. In particular, physical realization of quantum cryptography and quantum computer

seems to be accomplished in the near future1.

Although entanglement is highly useful property of quantum state, it is normally frag-

ile when quantum system interacts with its surroundings. Interaction with the environ-

ments makes the given quantum system undergo decoherence[13] and as a result, it loses

its quantum properties. Thus, decoherence significantly changes the quantum entangle-

ment. Sometimes entanglement exhibits an exponential decay in time by successive halves.

Sometimes, however, entanglement sudden death (ESD) occurs when the entangled multi-

partite quantum system is embedded in Markovian environments[14–19]. This means that

the entanglement is completely disentangled at finite times.

Most typical surrounding is external temperature. At finite temperature quantum me-

chanics the external temperature is introduced via imaginary time at zero temperature quan-

tum mechanics. Thus, the exponential decay or ESD-like phenomenon can occur in external

temperature. If external temperature induces the ESD-like phenomenon in temperature,

this means there exists a critical temperature Tc, below or above which the entanglement

of a system is nonzero or completely zero. We will call this phenomenon thermal entangle-

ment phase transition (TEPT) between nonzero entanglement phase and zero entanglement

phase. The TEPT and the critical temperature Tc were explored[20] recently by making

use of concurrence[21, 22] in anisotropic Heisenberg XY Z spin model with Dzyaloshinskii-

Moriya interaction[23, 24].

The purpose of this paper is to study on the TEPT phenomenon in continuous variable

system. Most simple continuous variable system seems to be two-coupled harmonic oscillator

system. In this reason we will choose this system to explore the TEPT when the spring

constant k0 and coupling constant J are arbitrarily time-dependent. Another reason we

choose this system is because of the fact that the thermal state of this system is Gaussian.

1 see Ref. [12] and web page https://www.computing.co.uk/ctg/news/3065541/european-union-reveals-

test-projects-for-first-tranche-of-eur1bn-quantum-computing-fund.
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It is known that the Peres-Horodecki positive partial transposition (PPT) criterion[25–27]

provides a necessary and sufficient condition for separability of Gaussian continuous variable

states[28, 29]. Thus, the temperature-dependence of entanglement can be roughly deduced

by considering the negativity-like quantity[30]. What we are interested in is to examine how

the arbitrarily time-dependent parameters affect the critical temperature. In particular, we

focus in this paper on the sudden quenched model, where the system parameters abruptly

change at t = 0.

The paper is organized as follows. In section II we derive the thermal state of single

harmonic oscillator system when the frequency is arbitrarily time-dependent. We focus on

the case of sudden quenched model (SQM). For SQM we derive the purity function and von

Neumann entropy of the thermal state analytically. In section III we derive explicitly the

thermal state of two coupled harmonic oscillator system when the spring constant k0 and

coupling constant J are arbitrarily time-dependent. In section IV we compute the purity

function, Rényi and von Neumann entropies, and mutual information analytically for the

thermal state of two coupled harmonic oscillator system in the case of SQM. It is shown

that the thermal state is less mixed with increasing the difference between initial and final

frequencies at the given external temperature. The mutual information shows that the

common information parties A and B share does not completely vanish even in the infinity

temperature limit. In section V the TEPT is discussed for the case of SQM by making use

of the negativity-like quantity. It is shown that the critical temperature Tc increases with

increasing the frequency difference. Thus, using SQM with large difference of initial and final

frequencies it seems to be possible to protect entanglement against external temperature. In

section VI a brief conclusion is given. In appendix A the eigenvalue equation for the thermal

state of the coupled harmonic oscillator system is explicitly solved.

II. THERMAL STATE FOR SINGLE HARMONIC OSCILLATOR WITH ARBI-

TRARY TIME-DEPENDENT FREQUENCY

Let us consider a single harmonic oscillator with time-dependent frequency, whose Hamil-

tonian is

H1 =
1

2
p2 +

1

2
ω2(t)x2. (2.1)
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Then, the action functional of this system is given by

S[x] =

∫ t

0

[
1

2
ẋ2 − 1

2
ω2(t)x2

]
. (2.2)

Usually Kernel for any quantum system can be derived by computing the path-integral[31]

K[x′, x : t] =

∫ (t,x′)

(0,x)

DxeiS[x]. (2.3)

Although the path-integral with constant frequency can be computed[31, 32], it does not

seem to be simple matter to compute the path-integral explicitly when ω is arbitrary time-

dependent. However, it is possible to derive the Kernel without computing the path-integral

if one uses the Schrödinger description of Kernel

K[x′, t2 : x, t1] =
∑
n

ψn (x′, t2)ψ∗n (x, t1) (2.4)

where n represents all possible quantum numbers and ψn (x, t) is linearly-independent solu-

tion of time-dependent Schrödinger equation (TDSE).

The TDSE of our system was exactly solved in Ref. [33, 34]. The linearly independent

solutions ψn(x, t) (n = 0, 1, · · · ) are expressed in a form

ψn(x, t) = e−iEnτ(t)e
i
2

(
ḃ
b

)
x2
φn

(x
b

)
(2.5)

where

En =

(
n+

1

2

)
ω(0), τ(t) =

∫ t

0

ds

b2(s)
(2.6)

φn(x) =
1√
2nn!

(
ω(0)

πb2

)1/4

Hn

(√
ω(0)x

)
e−

ω(0)
2
x2 .

In Eq. (2.6) Hn(z) is nth-order Hermite polynomial and b(t) satisfies the Ermakov equation

b̈+ ω2(t)b =
ω2(0)

b3
(2.7)

with b(0) = 1 and ḃ(0) = 0.

Solutions of the Ermakov equation were discussed in Ref. [35]. If ω(t) is time-

independent, b(t) is simply one. If ω(t) is instantly changed as

ω(t) =

 ω0 t = 0

ω t > 0,
(2.8)
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then b(t) becomes

b(t) =

√
ω2 − ω2

0

2ω2
cos(2ωt) +

ω2 + ω2
0

2ω2
. (2.9)

For more general time-dependent case the Ermakov equation should be solved numerically.

Inserting Eq. (2.5) into Eq. (2.4) and using

∞∑
n=0

tn

n!
Hn(x)Hn(y) = (1− 4t2)−1/2 exp

[
4txy − 4t2(x2 + y2)

1− 4t2

]
, (2.10)

Kernel for this system becomes

K[x′, x : t] = e
i
2

(
ḃ
b

)
x′2 (ω0ω

′)1/4√
2πi sin Γ(t)

exp

[
i

2 sin Γ(t)

{
(ω0x

2 + ω′x′2) cos Γ(t)− 2
√
ω0ω′xx

′}]
(2.11)

where

ω0 = ω(t = 0), ω′(t) =
ω0

b2(t)
, Γ(t) =

∫ t

0

ω′(s)ds. (2.12)

For time-independent case b(t) = 1, ω0 = ω′ = ω, and Γ(t) = ωt. Then, the Kernel in

Eq. (2.11) reduces to usual well-known harmonic oscillator Kernel

K[x′, x : t] =

√
ω

2πi sinωt
exp

[
iω

2 sinωt

{
(x2 + x′2) cosωt− 2xx′

}]
. (2.13)

It is remarkable to note that the x↔ x′ symmetry in Eq. (2.13) is broken in Eq. (2.11) due

to the time-dependence of frequency. In fact, it is manifest due to the fact that the system

parameters at t = 0 are different from those at t > 0.

From now on in this section we consider only the case of SQM given in Eq. (2.8). In this

case the Kernel becomes

K[x′, x : t] = e
−
(
i(ω2−ω20)

4ωb2
sin 2ωt

)
x′2
√

ω0

2πib sin Γ(t)
exp

[
iω0

2 sin Γ(t)

{(
x2 +

x′2

b2

)
cos Γ(t)− 2xx′

b

}]
(2.14)

where b(t) is given in Eq. (2.9) and Γ(t) becomes

Γ(t) = tan−1
(ω0

ω
tanωt

)
=

1

2i
ln
ω + iω0 tanωt

ω − iω0 tanωt
. (2.15)

In quantum mechanics the inverse temperature β = 1/kBT is introduced as a Euclidean

time β = it (see Ch. 10 of Ref.[31]), where kB is a Boltzmann constant. Then, the thermal

density matrix is defined as

ρT [x′, x : β] =
1

Z(β)
G[x′, x : β] (2.16)
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where β = 1/kBT , G[x′, x : β] = K[x′, x : −iβ], and Z(β) = trG[x′, x : β] is a partition

function. Throughout this paper we use kB = 1 for convenience. For SQM case b(t) and

Γ(t) are changed into b(β) and Γ(β), whose explicit expressions are

b(β) =

√
ω2 − ω2

0

2ω2
cosh(2ωβ) +

ω2 + ω2
0

2ω2
, Γ(β) = −iΓ0(β) (2.17)

where2

Γ0(β) =
1

2
ln

(
ω + ω0 tanhωβ

ω − ω0 tanhωβ

)
. (2.18)

Then, the partition function of this system becomes

Z(β) =

√
ω0

2πb sinh Γ0

√
π

a0,−
(2.19)

where

a0,±(β) = A0(β) +
ω0

2 sinh Γ0

[(
1 +

1

b2

)
cosh Γ0 ±

2

b

]
(2.20)

with

A0(β) =
ω2 − ω2

0

4ωb2
sinh(2ωβ). (2.21)

Using the partition function one can derive the thermal density matrix in a form

ρ0[x′, x : β] =

√
a0,−

π
e−A0(β)x′2 exp

[
− ω0

2 sinh Γ0

{(
x2 +

x′2

b2

)
cosh Γ0 −

2xx′

b

}]
. (2.22)

The thermal density matrix is in general mixed state. In order to explore how much it is

mixed we first compute the purity function P0(β) = tr (ρ0)2. If it is one, this means that ρ0

is pure state. If it is zero, this means ρ0 is completely mixed state. If 0 < P0(β) < 1, this

means that ρ0 is partially mixed state. It is not difficult to show that the purity function of

this system is

P0(β) ≡
∫
dxdx′ρ0[x′, x : β]ρ0[x, x′ : β] =

√
a0,−

a0,+

. (2.23)

Another quantity we want to compute is a von Neumann entropy S[ρ0] of ρ0. If ρ0 is pure

state, S[ρ0] is zero. If its mixedness increases, S[ρ0] also increases from zero and eventually

goes to infinity for completely mixed state in this continuum case. In order to compute the

von Neumann entropy we should solve the eigenvalue equation∫
dxρ0[x′, x : β]fn(x) = λn(β)fn(x′). (2.24)

2 In fact, one can show that b(β) in Eq. (2.17) is a solution of d2b
dβ2 − ω2b = −ω

2
0

b3 .
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One can show that the eigenvalue equation∫
dx
(
Ae−a1x

2−a2x′2+2bxx′
)
fn(x) = λnfn(x′) (2.25)

can be solved, and the eigenfunction and corresponding eigenvalue are

fn(x) = C−1
n Hn(

√
ε0x)e−

α0
2
x2 (2.26)

λn = A

√
2π

(a1 + a2) + ε0

[
(a1 + a2)− ε0
(a1 + a2) + ε0

]n/2
where ε0 =

√
(a1 + a2)2 − 4b2 and α0 = ε0−(a1−a2). By making use of integral formula[36]∫ ∞
−∞

e−(x−y)2Hm(cx)Hn(cx)dx (2.27)

=
√
π

min(m,n)∑
k=0

2kk!

m

k

 n

k

 (1− c2)
m+n

2
−kHm+n−2k

(
cy√

1− c2

)
and various properties of Gamma function[37], the normalization constant Cn can be written

in a form

C2
n =

1
√
α0

n∑
k=0

22n−k
(
ε0
α0

− 1

)n−k Γ2(n+ 1)Γ
(
n− k + 1

2

)
Γ(k + 1)Γ2(n− k + 1)

. (2.28)

If a1 = a2, α0 = ε0, which makes nonzero in k-summation of Eq. (2.28) only when k = n.

Then, Cn becomes usual harmonic oscillator normalization constant

C−1
n =

1√
2nn!

(ε0
π

)1/4

. (2.29)

Using Eqs. (2.25) and (2.26) the eigenvalue of Eq. (2.24) becomes

λn(β) = (1− ξ0)ξn0 (2.30)

where

ξ0 =

√
a0,+ −

√
a0,−

√
a0,+ +

√
a0,−

=
1− P0(β)

1 + P0(β)
. (2.31)

Thus, the spectral decomposition of ρ0 can be written as

ρ0[x′, x : β] =
∑
n

λn(β)fn(x′ : β)f ∗n(x : β), (2.32)

where fn(x : β) is given by Eq. (2.26) with ε0 =
√
a0,+a0,− and α0 = ε0 + A0(β) −

ω0 cosh Γ0

2 sinh Γ0

(
1− 1

b2

)
. Eq. (2.30) implies

∑
n λn(β) = 1, which is consistent with trρ0 = 1.

Then the von Neumann entropy of ρ0 becomes

S[ρ0] ≡ −
∑
n

λn(β) lnλn(β) = − ln(1− ξ0)− ξ0

1− ξ0

ln ξ0. (2.33)
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FIG. 1: (Color online) The T -dependence of (a) purity function and (b) von Neumann entropy

when ω = 3 (black line), 5 (red line), 7 (blue line) with ω0 = 3. Both figures show that the

mixedness of the thermal state (2.22) decreases with increasing |ω− ω0| at the given temperature.

All figures show that ρ0 becomes more and more mixed with increasing the external temperature.

For constant frequency, i.e. ω = ω0, A0 = 0, a0,+ = ω coth ωβ
2

, a0,− = ω tanh ωβ
2

, and

ξ0 = e−ωβ. For the case of SQM A0 and a0,± become larger than those in constant frequency

case in the entire range of temperature. As a result, P0(β) and ξ0 become larger and smaller

compared to the constant frequency case. Since − ln(1 − x) − x
1−x lnx is monotonically

increasing function in the range 0 ≤ x ≤ 1, this fact decreases the von Neumann entropy.

The temperature dependence of the purity function and von Neumann entropy is plotted

in Fig. 1(a) and Fig. 1(b) when ω = 3 (black line), 5 (red line), 7 (blue line) with ω0 = 3. All

figures show that ρ0 becomes more and more mixed with increasing the external temperature.

Both figures also show that ρ0 becomes less mixed with increasing |ω − ω0| at the given

temperature. Thus, we can use SQM model to protect the purity against the external

temperature.

III. THERMAL STATE FOR TWO COUPLED HARMONIC OSCILLATORS

WITH ARBITRARY TIME-DEPENDENT FREQUENCIES

In this section we will derive the thermal state for two coupled harmonic oscillator system,

whose Hamiltonian is

H2 =
1

2

(
p2

1 + p2
2

)
+ V (x1, x2). (3.1)
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We choose the potential V (x1, x2) as a quadratic function with arbitrary time-dependent

spring and coupling parameters. The explicit expression of the potential is chosen in a form

V (x1, x2) =
1

2

[
k0(t)(x2

1 + x2
2) + J(t)(x1 − x2)2

]
. (3.2)

Then, the action functional of this system is

S[x1, x2] =

∫ t

0

dt

[
1

2

(
ẋ2

1 + ẋ2
2

)
− V (x1, x2)

]
. (3.3)

It is easy to show that the potential is diagonalized by introducing y1 = 1√
2
(x1 + x2)

and y2 = 1√
2
(x1 − x2) . In terms of new canonical variables the action becomes that of two

non-interacting harmonic oscillators in a form

S[x1, x2] =

∫ t

0

dt

[
1

2

(
ẏ2

1 + ẏ2
2

)
+

1

2

{
ω2

1(t)y2
1 + ω2

2(t)y2
2

}]
(3.4)

where ω1(t) =
√
k0(t) and ω2(t) =

√
k0(t) + 2J(t). Thus, the Kernel for this system is

K[x′1, x
′
2 : x1, x2 : t] = (3.5)

2∏
j=1

[
e
i
2

(
ḃj
bj

)
y′2j

(
ωj,0ω

′
j

)1/4√
2πi sin Γj(t)

exp

[
i

2 sin Γj(t)

{
(ωj,0y

2
j + ω′jy

′2
j ) cos Γj(t)− 2

√
ωj,0ω′jyjy

′
j

}]]

where ωj,0 = ωj(t = 0), ω′j =
ωj,0
b2j (t)

, and Γj(t) =
∫ t

0
ω′j(s)ds. Of course, b1(t) and b2(t) satisfy

the Ermakov equation

b̈j + ω2
j (t)bj =

ωj,0
b3
j

(j = 1, 2) (3.6)

with ḃj(0) = 0 and bj(0) = 1. Then the thermal density matrix of this system is given by

ρT [x′1, x
′
2 : x1, x2 : β] =

1

Z(β)
K[x′1, x

′
2 : x1, x2 : −iβ] (3.7)

where β = 1/kBT and Z(β) = trK[x′1, x
′
2 : x1, x2 : −iβ].

In this paper we will examine only the case of SQM. More general time-dependent cases

will be explored elsewhere. If spring and coupling constants are abruptly changed as

k0 =

 k0,i t = 0

k0,f t > 0
J =

 Ji t = 0

Jf t > 0,
(3.8)

ω1 and ω2 become

ω1 =

 ω1,0 ≡ ω1,i =
√
k0,i t = 0

ω1,f =
√
k0,f t > 0,

ω2 =

 ω2,0 ≡ ω2,i =
√
k0,i + 2Ji t = 0

ω2,f =
√
k0,f + 2Jf t > 0.

(3.9)
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Then, the thermal density matrix of this system is given by

ρT [x′1, x
′
2 : x1, x2 : β] (3.10)

=
2∏
j=1

√
aj,−
π

exp

[
−Ajy′2j −

ωj,i
2 sinh ΓE,j

{(
y2
j +

y′2j
b2
j

)
cosh ΓE,j −

2yjy
′
j

bj

}]
where3

bj =

√
ω2
j,f − ω2

j,i

2ω2
j,f

cosh(2ωj,fβ) +
ω2
j,f + ω2

j,i

2ω2
j,f

, ΓE,j =
1

2
ln
ωj,f + ωj,i tanh(ωj,fβ)

ωj,f − ωj,i tanh(ωj,fβ)
(3.11)

Aj =
ω2
j,f − ω2

j,i

2ωj,fb2
j

sinh(2ωj,fβ), aj,± = Aj +
ωj,i

2 sinh ΓE,j

[(
1 +

1

b2
j

)
cosh ΓE,j ±

2

bj

]
with j = 1, 2. For the limit of ωj,i = ωj,f ≡ ωj, we have Aj = 0, bj = 1, ΓE,j = ωjβ,

aj,+ = ωj coth(ωjβ/2), and aj,− = ωj tanh(ωjβ/2). In terms of xj-coordinates the thermal

state reduces to

ρT [x′1, x
′
2 : x1, x2 : β] =

√
a1,−a2,−

π
exp

[
− α1(x′21 + x′22 )− α2(x2

1 + x2
2) (3.12)

+2α3x
′
1x
′
2 + 2α4x1x2 + 2α5(x1x

′
1 + x2x

′
2) + 2α6(x1x

′
2 + x2x

′
1)

]
where

α1 =
2∑
j=1

[
Aj
2

+
ωj,i cosh ΓE,j
4b2
j sinh ΓE,j

]
, α2 =

2∑
j=1

ωj,i cosh ΓE,j
4 sinh ΓE,j

(3.13)

α3 =
2∑
j=1

(−1)j
[
Aj
2

+
ωj,i cosh ΓE,j
4b2
j sinh ΓE,j

]
, α4 =

2∑
j=1

(−1)j
ωj,i cosh ΓE,j
4 sinh ΓE,j

α5 =
2∑
j=1

ωj,i
4bj sinh ΓE,j

, α6 =
2∑
j=1

(−1)j−1 ωj,i
4bj sinh ΓE,j

.

It is worthwhile noting that αj satisfy

α1 + α2 =
(a1,+ + a1,−) + (a2,+ + a2,−)

4
(3.14)

α3 + α4 = −(a1,+ + a1,−)− (a2,+ + a2,−)

4

α5 =
1

8
[(a1,+ − a1,−) + (a2,+ − a2,−)] , α6 =

1

8
[(a1,+ − a1,−)− (a2,+ − a2,−)] .

Using Eq. (3.14) it is straightforward to show trρT = 1. In next section we compute several

quantum information quantities analytically, which measure how much ρT is mixed.

3 The subscript E in ΓE,j stands for “Euclidean”. This subscript is attached to stress the point that the

inverse temperature β is introduced as a Euclidean time.
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IV. VARIOUS QUANTITIES OF THERMAL STATE: CASE OF SQM

In this section we will compute purity function, Rényi and von Neumann entropies, and

mutual information of ρT [x′1, x
′
2 : x1, x2 : β] given in Eq. (3.10) or equivalently Eq. (3.12).

As a by-product we derive the spectral decomposition of ρT [x′1, x
′
2 : x1, x2 : β].

A. Purity function

The purity function is defined as

P (β) = trρ2
T ≡

∫
dx′1dx

′
2dx1dx2ρT [x′1, x

′
2 : x1, x2 : β]ρT [x1, x2 : x′1, x

′
2 : β]. (4.1)

If P (β) = 1 or 0, this means that ρT is pure or completely mixed state. Direct calculation

shows

P (β) =

√
a1,−a2,−

a1,+a2,+

. (4.2)

For the case of constant frequencies ωj,i = ωj,f ≡ ωj it reduces to

P (β) = tanh
ω1β

2
tanh

ω2β

2
. (4.3)

The temperature-dependence of the purity function is plotted in Fig. 2 (a) when k0,f =

Jf = 6 (red line) and k0,f = Jf = 9 (blue line). The k0,i and Ji are fixed as k0,i = Ji = 3.

The black dashed line corresponds to constant frequencies k0 = J = 3. As expected ρT

becomes more and more mixed with increasing temperature. Fig. 2(a) also show that ρT is

less mixed when |k0,f − k0,i| and |Jf − Ji| increase.

B. Rényi and von Neumann entropies

In order to solve the Rényi and von Neumann entropies of ρT we should solve the eigen-

value equation∫
dx1dx2ρT [x′1, x

′
2 : x1, x2 : β]umn(x1, x2 : β) = pmn(β)umn(x′1, x

′
2 : β). (4.4)

Eq. (4.4) is solved in appendix A and the eigenvalue pmn(β) is

pmn(β) = (1− ξ1)ξm1 (1− ξ2)ξn2 (4.5)
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FIG. 2: (Color online) The T -dependence of (a) P (β) (b) Svon, and (c) I(ρT ) when k0,f = Jf = 6

(red line) and k0,f = Jf = 9 (blue line) when k0,i = Ji = 3. The black dashed line corresponds to

constant frequencies k0,i = Ji = k0,f = Jf = 3.

where

ξ1 =

√
a1,+ −

√
a1,−

√
a1,+ +

√
a1,−

, ξ2 =

√
a2,+ −

√
a2,−

√
a2,+ +

√
a2,−

. (4.6)

In terms of ξ1 and ξ2 the purity function P (β) in Eq. (4.2) can be written as

P (β) =
1− ξ1

1 + ξ1

1− ξ2

1 + ξ2

. (4.7)

Then, the Rényi and von Neumann entropies of ρT reduce to

Sα = S1,α + S2,α Svon = S1,von + S2,von (4.8)

where

Sj,α =
1

1− α
ln

(1− ξj)α

1− ξj
, Sj,von = − ln(1− ξj)−

ξj
1− ξj

ln ξj (4.9)

with j = 1, 2.

One can show also that the normalized eigenfunction umn(x1, x2 : β) is

umn(x1, x2 : β) =

(
1

C1,m

Hm(
√
ε1y1)e−µ1y

2
1

)(
1

C2,n

Hn(
√
ε2y2)e−µ2y

2
2

)
(4.10)
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where

ε1 =
√
a1,+a1,− ε2 =

√
a2,+a2,− (4.11)

µ1 =
1

2
[ε1 + (α1 − α2)− (α3 − α4)] , µ2 =

1

2
[ε2 + (α1 − α2) + (α3 − α4)]

C2
1,m =

1√
2µ1

m∑
k=0

22m−k
(
ε1

2µ1

− 1

)m−k
Γ2(m+ 1)Γ(m− k + 1/2)

Γ(k + 1)Γ2(m− k + 1)

C2
2,n =

1√
2µ2

n∑
k=0

22n−k
(
ε2

2µ2

− 1

)n−k
Γ2(n+ 1)Γ(n− k + 1/2)

Γ(k + 1)Γ2(n− k + 1)
.

For the case of constant frequencies α1 − α2 = α3 − α4 = 0, which results in µj =
εj
2

. In

this case the sum in C2
1.m or C2

2,n is nonzero only when k = m or k = n, and this fact yields

well-known quantities C−1
1,m = 1√

2mm!

(
ε1
π

)1/4
and C−1

2,n = 1√
2nn!

(
ε2
π

)1/4
. Thus, the spectral

decomposition of ρT can be written as

ρT [x′1, x
′
2 : x1, x1 : β] =

∑
m,n

pmn(β)umn(x′1, x
′
2 : β)u∗mn(x1, x2 : β). (4.12)

The temperature-dependence of the von Neumann entropy is plotted in Fig. 2 (b) when

k0,f = Jf = 6 (red line) and k0,f = Jf = 9 (blue line). The k0,i and Ji are fixed as

k0,i = Ji = 3. The black dashed line corresponds to constant frequencies k0 = J = 3. As

expected ρT becomes more and more mixed with increasing temperature. Fig. 2(b) also

show that ρT is less entangled when |k0,f − k0,i| and |Jf − Ji| increase as purity function

exhibits.

C. mutual information

From ρT in Eq. (3.12) one can derive the substates ρT,A = trBρT and ρT,B = trAρT by

performing partial trace appropriately. Then, the substates become

ρT,A[x′, x : β] = ρT,B[x′, x : β] =

√
a1,−a2,−

π(α1 + α2 − 2α5)
e−B1x2−B2x′2+2B3xx′ (4.13)

where

B1 =
α2(α1 + α2 − 2α5)− (α4 + α6)2

α1 + α2 − 2α5

, B2 =
α1(α1 + α2 − 2α5)− (α3 + α6)2

α1 + α2 − 2α5

(4.14)

B3 =
α5(α1 + α2 − 2α5) + (α3 + α6)(α4 + α6)

α1 + α2 − 2α5

.
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It is not difficult to show that the eigenvalues of ρT,A or ρT,B are (1− ζ)ζn, where

ζ =
2B3

(B1 +B2) + ν
(4.15)

with ν =
√

(B1 +B2)2 − 4B2
3 . Using the eigenvalues the Rényi and von Neumann entropies

of ρT,A and ρT,B can be obtained as

SA,α = SB,α =
1

1− α
ln

(1− ζ)α

1− ζα
, SA,von = SB,von = − ln(1− ζ)− ζ

1− ζ
ln ζ. (4.16)

Therefore, the mutual information of ρT is given by

I(ρT ) = SA,von + SB,von − Svon. (4.17)

The temperature-dependence of the mutual information is plotted in Fig. 2 (c) when

k0,f = Jf = 6 (red line) and k0,f = Jf = 9 (blue line). The k0,i and Ji are fixed as

k0,i = Ji = 3. The black dashed line corresponds to constant frequencies k0 = J = 3. Like

other quantities mutual information also decreases with increasing temperature. However, it

does not completely vanish at T =∞. Fig. 2 (c) shows that the mutual information seems

to approach 0.144 at the large temperature limit. This implies that the common information

parties A and B share does not completely vanish even in the infinity temperature limit.

V. THERMAL ENTANGLEMENT PHASE TRANSITION: CASE OF SQM

Since the thermal state ρT given in Eq. (3.12) is mixed state, its entanglement is in

general defined via the convex-roof method[38, 39];

E(ρT ) = min
∑
j

pjE(ψj), (5.1)

where minimum is taken over all possible pure state decompositions, i.e. ρT =
∑

j pj|ψj〉〈ψj|,

with 0 ≤ pj ≤ 1 and
∑

j pj = 1. The decomposition which yields minimum value is called

the optimal decomposition. However, it seems to be highly difficult problem to derive the

optimal decomposition in the continuous variable system.

Because of this difficulty, we will consider the negativity-like quantity[30] of ρT . Let σT
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be a partial transpose of ρT , i.e.,

σT [x′1, x
′
2 : x1, x2 : β] ≡ ρT [x1, x

′
2 : x′1, x2 : β] (5.2)

=

√
a1,−a2,−

π
exp

[
− α1(x2

1 + x′22 )− α2(x′21 + x2
2) + 2α3x1x

′
2 + 2α4x

′
1x2

+2α5(x1x
′
1 + x2x

′
2) + 2α6(x1x2 + x′1x

′
2)

]
.

Then, the negativity-like quantity N (ρT ) is defined as

N (ρT ) =
∑
m,n

|Λmn| − 1, (5.3)

where Λmn is eigenvalue of σT , i.e.,∫
dx1dx2σT [x′1, x

′
2 : x1, x2 : β]fmn(x1, x2) = Λmn(β)fmn(x′1, x

′
2 : β). (5.4)

One may wonder why the negativity-like quantity is introduced, because the PPT is

known as necessary and sufficient criterion of separability for only 2 × 2 qubit-qubit and

2× 3 qubit-qudit states[25–27]. However, as Ref. [28, 29] have shown, PPT also provides a

necessary and sufficient criterion of the separability for Gaussian continuous variable quan-

tum states. Furthermore, the distillation protocols to maximally entangled state have been

already suggested in Ref. [40, 41] in the Gaussian states. Thus, our negativity-like quantity

is valid at least to determine whether the given Gaussian state is entangled or not. Since

N (ρT ) is proportional to E(ρT ), N (ρT ) = 0 at the critical temperature T = Tc of the TEPT

if the external temperature induces the ESD phenomenon. Thus, if the eigenvalue equation

(5.4) is solved, it is possible to compute Tc.

As we will show in the following, however, it seems to be very difficult to solve Eq. (5.4)

directly. In order to solve Eq. (5.4) we define

fmn(x1, x2 : β) = e
α1−α2

2
(x21−x22)gmn(x1, x2, β). (5.5)

Then, Eq. (5.4) can be written as

√
a1,−a2,−

π
exp

[
−α1 + α2

2

(
x′21 + x′22

)
+ 2α6x

′
1x
′
2

]
(5.6)

×
∫
dx1dx2 exp

−α1 + α2

2
(x2

1 + x2
2) + 2α6x1x2 + 2

(
x′1, x

′
2

) α5 α4

α3 α5

 x1

x2


×gmn(x1, x2 : β) = Λmn(β)gmn(x′1, x

′
2 : β).
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If one changes the variables as y1 = 1√
2
(x1 + x2) and y2 = 1√

2
(−x1 + x2), Eq. (5.6) reduces

to

√
a1,−a2,−

π
e−µ−y

′2
1 −µ+y′22

∫
dy1dy2 exp

−µ−y2
1 − µ+y

2
2 +

(
y′1, y

′
2

)
A

 y1

y2

 (5.7)

×gmn(y1, y2 : β) = Λmn(β)gmn(y′1, y
′
2 : β)

where

µ± =
α1 + α2

2
± α6, A =

 2α5 + (α3 + α4) −(α3 − α4)

α3 − α4 2α5 − (α3 + α4)

 . (5.8)

The difficulty arises because of the fact that A is not symmetric matrix if α3 6= α4. Due

to this fact it seems to be impossible to factorize Eq. (5.7) into two single-party eigenvalue

equations as we did in appendix A.

However, Eq. (5.7) can be solved for the case of constant frequencies, i.e., ω1,i = ω1,f ≡ ω1

and ω2,i = ω2,f ≡ ω2, because in this case α3 is exactly equals to α4. Furthermore, in this

case we get

µ+ =
1

4

[
ω1 coth

ω1β

2
+ ω2 tanh

ω2β

2

]
, µ− =

1

4

[
ω1 tanh

ω1β

2
+ ω2 coth

ω2β

2

]
ν+ ≡ α5 −

α3 + α4

2
=

1

4

[
ω1 coth

ω1β

2
− ω2 tanh

ω2β

2

]
(5.9)

ν− ≡ α5 +
α3 + α4

2
= −1

4

[
ω1 tanh

ω1β

2
− ω2 coth

ω2β

2

]
.

Since α3 = α4 in this case, Eq. (5.7) is factorized into the following two single-party

eigenvalue equations:

e−µ−y
′2
1

∫
dy1e

−µ−y21+2ν−y′1y1g1,m(y1 : β) = pm(β)g1,m(y′1 : β) (5.10)

e−µ+y
′2
2

∫
dy2e

−µ+y22+2ν+y′2y2g2,n(y2 : β) = qn(β)g2,n(y′2 : β).

Then, the total eigenvalue Λmn and the normalized eigenfunction fmn(x1, x2 : β) are ex-

pressed as

Λmn =
1

π

√
ω1ω2 tanh

ω1β

2
tanh

ω2β

2
pm(β)qn(β) (5.11)

fmn(x1, x2 : β) = g1,m(y1 : β)g2,n(y2 : β),
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where g1,m(y1 : β) and g2,n(y2 : β) are normalized eigenfunctions of Eq. (5.10). Solving Eq.

(5.10) it is straightforward to show that the normalized eigenfunctions are

g1,m(y1 : β) =
1√

2mm!

(ε1
π

)1/4

Hm (
√
ε1y1) e−

ε1
2
y21 (5.12)

g2,n(y2 : β) =
1√
2nn!

(ε2
π

)1/4

Hn (
√
ε2y2) e−

ε2
2
y22 ,

where

ε1 = 2
√
µ2
− − ν2

− =

√
ω1ω2 tanh

ω1β

2
coth

ω2β

2
(5.13)

ε2 = 2
√
µ2

+ − ν2
+ =

√
ω1ω2 coth

ω1β

2
tanh

ω2β

2
.

One can also show that the eigenvalue Λmn is

Λmn = (1− ζ1)(1− ζ2)ζm1 ζ
n
2 (5.14)

where

ζ1 =
ν−

µ− + ε1
2

=

√
µ− + ν− −

√
µ− − ν−√

µ− + ν− +
√
µ− − ν−

= −

√
ω1 tanh ω1β

2
−
√
ω2 coth ω2β

2√
ω1 tanh ω1β

2
+
√
ω2 coth ω2β

2

(5.15)

ζ2 =
ν+

µ+ + ε2
2

=

√
µ+ + ν+ −

√
µ+ − ν+√

µ+ + ν+ +
√
µ+ − ν+

=

√
ω1 coth ω1β

2
−
√
ω2 tanh ω2β

2√
ω1 coth ω1β

2
+
√
ω2 tanh ω2β

2

.

One can compute ±1 − ζ1 and ±1 − ζ2 explicitly, which result in −1 < ζ1, ζ2 ≤ 1 for

arbitrary temperature. Thus, it is easy to show
∑

m,n Λmn(β) = 1 as expected. Eq. (5.3)

and Eq. (5.14) make N (β) to be

N (β) =
(1− ζ1)(1− ζ2)

(1− |ζ1|)(1− |ζ2|)
− 1. (5.16)

The T -dependence of N (β) is plotted in Fig. 3 for (a) positive and (b) negative J with fixing

k0 = 1. Both figures show N (β) is zero at T ≥ Tc. Similar results were obtained for general

bosonic harmonic lattice systems[25, 42]. Since N (β) is proportional to entanglement of ρT ,

this fact implies that ρT is entangled (or separable) state at T < Tc (or T ≥ Tc). The critical

temperature temperature Tc increases with increasing |J |.

From Eq. (5.16) it is evident that ρT is separable when ζ1 ≥ 0 and ζ2 ≥ 0. Eq. (5.15)

implies that this separability criteria can be rewritten in a form

x tanhx− y coth y ≤ 0, x cothx− y tanh y ≥ 0 (5.17)
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FIG. 3: (Color online) The T -dependence of N (β) for (a) J = 1 (black line), 5 (red dashed line),

10 (blue dotted line) and (b) J = −0.45 (black line), −0.35 (red dashed line), −0.2 (blue dotted

line) with fixing k0 = 1. Both figures show N (β) is zero at T ≥ Tc. Since N (β) is proportional

to entanglement of ρT , this fact implies that ρT is entangled (or separable) state at T < Tc (or

T ≥ Tc). The critical temperature temperature Tc increases with increasing |J |.

where x = ω1β/2 and y = ω2β/2. If J ≥ 0, first equation of Eq. (5.17) is automatically

satisfied. Hence, the second equation plays a role as a genuine separability criterion. If

J < 0, first equation is true criterion. It is worthwhile noting that two equations in Eq.

(5.17) can be transformed into each other by interchanging x and y. This fact implies that

the region in x-y plane, where the separable states reside, is symmetric with respect to

y = x.

The shaded region in Fig. 4(a) is a region where the separable states of ρT reside in x-y

plane. As expected, the region is symmetric with respect to y = x. It is shown that most

separable states are accumulated in 0 ≤ x, y ≤ 1. The boundary of the region contains

an information about the critical temperature Tc. The black dashed line in the region is

y = x cothx. Since this is very close to upper boundary, this can be used to compute Tc

approximately.

Let the upper boundary of Fig. 4(a) be expressed by yc = xcg(xc), where xc and yc are x

and y at T = Tc. Then the low boundary should be xc = ycg(yc). The function g(z) can be

derived numerically by using Eq. (5.17) after changing the inequality into equality. Then,

Tc can be computed by

Tc =
ωmin

2g−1
(
ωmax
ωmin

) (5.18)
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FIG. 4: (Color online) (a) The shaded region in x-y plane is a region where the separable states

of ρT reside. The boundary contains an information on the critical temperature Tc. The black

dashed line in the shaded region is y = x cothx. This is used to compute Tc approximately. (b)

The J-dependence of Tc when k0 = 1. The black solid line and red dashed line correspond to exact

and approximate Tc respectively.

where ωmin = min(ω1, ω2) and ωmax = max(ω1, ω2). If one uses g(z) ≈ coth z, the critical

temperature is approximately

Tc ≈
ωmin

ln
(
ωmax+ωmin
ωmax−ωmin

) . (5.19)

In Fig. 4(b) the J-dependence of Tc is plotted when k0 = 1. The black solid line and

red dashed line correspond to Eq. (5.18) and Eq. (5.19) respectively. It is shown that Tc

increases with increasing |J | as expected from Fig. 3.

As we commented earlier, for the case of SQM it seems to be highly difficult problem

to solve the eigenvalue equation (5.4) directly. However, we can conjecture the eigenvalue

Λmn(β) without deriving the eigenfunction fmn[x1, x2 : β] as follows. Since
∑

m,n Λmn(β) =

1, Λmn(β) might be represented as Eq. (5.14). If this is right, we can compute ζ1 and ζ2 by

making use of the Rényi entropy. If the eigenvalue is represented as Eq. (5.14), the Rényi

entropy of σT can be written as

Sα[σT ] ≡ 1

1− α
ln tr [(σT )α] =

1

1− α

[
ln

(1− ζ1)α

1− ζα1
+ ln

(1− ζ2)α

1− ζα2

]
. (5.20)

Putting α = 2 or 3 in Eq. (5.20), it is possible to derive

(1− ζ1)(1− ζ2)

(1 + ζ1)(1 + ζ2)
= β1,

(1− ζ1)2(1− ζ2)2

(1 + ζ1 + ζ2
1 )(1 + ζ2 + ζ2

2 )
= β2 (5.21)
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FIG. 5: (Color online) (a) The temperature dependence of N (β)/N (∞) when k0,f = 1 (black

dashed line), k0,f = 20 (red line) and k0,f = 40 (blue line) with fixing k0,i = 1 and Ji = Jf = 5.

(b) The temperature dependence of N (β)/N (∞) when Jf = 5 (black dashed line), Jf = 25 (red

line), and Jf = 45 (blue line) with fixing k0,i = k0,f = 1 and Ji = 5. Both figures exhibit that the

critical temperature Tc increases with increasing |k0,f − k0,i| and |Jf − Ji|.

where

β1 ≡ trσ2
T =

√
X1

X2

, β2 ≡ trσ3
T =

4X1

X1 + 3X2 − 12(α2
5 − α3α4)

(5.22)

with

X1 = (α1 +α2−2α5)2−(α3 +α4 +2α6)2, X2 = (α1 +α2 +2α5)2−(α3 +α4−2α6)2. (5.23)

Solving Eq. (5.21), we get

u = ζ1 + ζ2 =
1− β1

2(4β2
1 − β2

1β2 − 3β2)

[
−3β2(1 + β1) +

√
3β2 [16β2

1 − β2(3− β1)2]

]
(5.24)

v = ζ1ζ2 = −1 +
1 + β1

2(4β2
1 − β2

1β2 − 3β2)

[
−3β2(1 + β1) +

√
3β2 [16β2

1 − β2(3− β1)2]

]
.

Thus, ζ1 and ζ2 for the case of SQM become

ζ1 =
u+
√
u2 − 4v

2
, ζ2 =

u−
√
u2 − 4v

2
. (5.25)

At the case of constant frequency β1 and β2 reduce to

β1 =
ε1ε2

4(µ+ + ν+)(µ− + ν−)
, β2 =

4(µ+ − ν+)(µ− − ν−)

(2µ+ + ν+)(2µ− + ν−)
. (5.26)

Using Eq. (5.26) and after tedious calculation, one can show that ζ1 and ζ2 in Eq. (5.25)

exactly coincide with those in Eq. (5.15) when ω1,i = ω1,f = ω1 and ω2,i = ω2,f = ω2. Then,
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the negativity-like quantity can be written in a form

N (β) =
1− u+ v

1 + |v| − (|ζ1|+ |ζ2|)
− 1. (5.27)

The temperature dependence of N (β)/N (∞) is plotted in Fig. 5. In Fig. 5(a) we choose

k0,f = 1 (black dashed line), k0,f = 20 (red line), and k0,f = 40 (blue line) when k0,i = 1 and

Ji = Jf = 5. As this figure exhibits, the critical temperature Tc increases with increasing

|k0,f − k0,i|. In Fig. 5(b) we choose Jf = 5 (black dashed line), Jf = 25 (red line), and

Jf = 45 (blue line) when k0,i = k0,f = 1 and Ji = 5. This figure also shows that Tc increases

with increasing |Jf − Ji|.

VI. CONCLUSIONS

In this paper we derive explicitly the thermal state of the two coupled harmonic oscillator

system when the spring and coupling constants are arbitrarily time-dependent. In particular,

we focus on the SQM model (see Eq. (3.8) and Eq. (3.9)). In this model we compute

purity function, Rényi and von Neumann entropies, and mutual information analytically

and examine their temperature-dependence. We also discuss on the TEPT by making use of

the negativity-like quantity. Our calculation shows that the critical temperature Tc increases

with increasing the difference between the initial and final frequencies. In this way we can use

the SQM model to protect the entanglement against the external temperature by introducing

a large difference of frequencies, i.e. |ωf − ωi| � 1.

There are several issues related to our paper. Since the SQM model we consider involves

a discontinuity at t = 0, it is unrealistic in some sense. In order to escape this fact we can

introduce the time-dependence of frequencies as a form ω = ωi + (ωf − ωi) sin Ωt. Then,

we have to solve the Ermakov equation numerically. In this case the critical temperature Tc

might be dependent on Ω and |ωf−ωi|. Then, it may be possible to protect the entanglement

in the thermal bath by adjusting Ω and |ωf − ωi| appropriately.

In this paper we introduce the negativity-like quantity to examine the thermal entan-

glement, because we do not know how to derive the optimal decomposition of Eq. (5.1).

Recently, the upper and lower bounds of entanglement of formation (EoF) are examined

for arbitrary two-mode Gaussian state[43]. It seems to be of interest to examine the TEPT
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with EoF.
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Appendix A

In this section we examine the eigenvalue equation of the following bipartite Gaussian

state:

ρ2[x′1, x
′
2 : x1, x2] = A exp

[
− a1(x′21 + x′22 )− a2(x2

1 + x2
2) + 2b1x

′
1x
′
2 + 2b2x1x2 (A.1)

+2c(x1x
′
1 + x2x

′
2) + 2f(x1x

′
2 + x2x

′
1)

]
where A =

√
(a1 + a2 − 2c)2 − (b1 + b2 + 2f)2/π. If a1 = α1, a2 = α2, b1 = α3, b2 = α4,

c = α5, and f = α6, ρ2 is exactly the same with the thermal state ρT given in Eq. (3.12).

Now let us consider the eigenvalue equation∫
dx1dx2ρ2[x′1, x

′
2 : x1, x2]fmn(x1, x2) = λmnfmn(x′1, x

′
2). (A.2)

First we change the variables as

y1 =
1√
2

(x1 + x2), y2 =
1√
2

(x1 − x2). (A.3)

Then Eq. (A.2) is simplified as

Ae−(a1−b1)y′21 −(a1+b1)y′22

∫
dy1dy2e

−(a2−b2)y21−(a2+b2)y22+2(c+f)y′1y1+2(c−f)y′2y2fmn(y1, y2)

= λmnf(y′1, y
′
2). (A.4)

Now, we define

fmn(y1, y2) = gm(y1)hn(y2). (A.5)

Then, Eq. (A.4) is solved if one solves the following two single-party eigenvalue equations:

e−(a1−b1)y′21

∫
dy1e

−(a2−b2)y21+2(c+f)y′1y1gm(y1) = pmgm(y′1) (A.6)

e−(a1+b1)y′22

∫
dy2e

−(a2+b2)y22+2(c−f)y′2y2hn(y2) = qnhn(y′2).

The eigenvalue of Eq. (A.2) can be computed as λmn = Apmqn.

By making use of Eq. (2.25) and Eq. (2.26) one can show λmn = (1 − ξ1)ξm1 (1 − ξ2)ξn2 ,
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where

ξ1 =
2(c+ f)

(a1 + a2 − b1 − b2) + ε1
(A.7)

=

√
(a1 + a2 − b1 − b2) + 2(c+ f)−

√
(a1 + a2 − b1 − b2)− 2(c+ f)√

(a1 + a2 − b1 − b2) + 2(c+ f) +
√

(a1 + a2 − b1 − b2)− 2(c+ f)

ξ2 =
2(c− f)

(a1 + a2 + b1 + b2) + ε2

=

√
(a1 + a2 + b1 + b2) + 2(c− f)−

√
(a1 + a2 + b1 + b2)− 2(c− f)√

(a1 + a2 + b1 + b2) + 2(c− f) +
√

(a1 + a2 + b1 + b2)− 2(c− f)

with

ε1 =
√

(a1 + a2 − b1 − b2)2 − 4(c+ f)2, ε2 =
√

(a1 + a2 + b1 + b2)2 − 4(c− f)2.

(A.8)

We can also use Eq. (2.25) and Eq. (2.26) to derive the normalized eigenfunction, whose

explicit expression is

fmn(x1, x2) =

(
1

C1,m

Hm(
√
ε1y1)e−

α1
2
y21

)(
1

C2,n

Hn(
√
ε2y2)e−

α2
2
y22

)
(A.9)

where

α1 = ε1 + (a1 − a2)− (b1 − b2), α2 = ε2 + (a1 − a2) + (b1 − b2) (A.10)

and the normalization constants C1,m and C2,n are

C2
1,m =

1
√
α1

m∑
k=0

22m−k
(
ε1
α1

− 1

)m−k
Γ2(m+ 1)Γ(m− k + 1/2)

Γ(k + 1)Γ2(m− k + 1)
(A.11)

C2
2,n =

1
√
α2

n∑
k=0

22n−k
(
ε2
α2

− 1

)n−k
Γ2(n+ 1)Γ(n− k + 1/2)

Γ(k + 1)Γ2(n− k + 1)
.

Thus, the spectral decomposition of ρ2 is

ρ2[x′1, x
′
2 : x1, x2] =

∑
m,n

λmnfmn(x′1, x
′
2)f ∗mn(x1, x2), (A.12)

where λmn and fmn are given in Eq. (A.7) and Eq. (A.9) respectively.
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