Skip to main content
Log in

Controller-independent quantum bidirectional communication using non-maximally entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the recent past, Mohapatra and Balakrishnan (Quantum Inf Process 16:147, 2017) proposed a controller-independent bidirectional quantum direct communication protocol using Bell states. In this work, we show the possibility of the achieving same protocol with non-maximally entangled states without compromising on the security and the efficiency of the protocol. We exploit the degree of entanglement as an additional security parameter. By doing so, the eavesdropper always gets detected in the initial stages of the protocol in the case of an intercept and resend attack. On the other hand, there is only 25% chance that the eavesdropper goes undetected in the initial stages of the protocol proposed by Mohapatra and Balakrishnan. Thus, the proposed protocol can be implemented with the viable physical resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  2. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101, 357 (2002)

    Article  ADS  Google Scholar 

  3. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Xiao, S.L.: A two-step quantum direct communication protocol using Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41, 75–78 (2004)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  8. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Rev. A 342, 60–66 (2005)

    MATH  Google Scholar 

  9. Ruoyang, Q., Zhen, S., Lin, Z., Penghao, N., Wentao, H., Liyuan, S., Qin, H., Jiancun, G., Liuguo, Y., Gui, L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, Article Number 22 (2019)

    Article  Google Scholar 

  10. Zhang, W., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  11. Srinatha, N., et al.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59–70 (2014)

    Article  ADS  Google Scholar 

  12. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhong-Xiao, M., Zhan-Jun, Z., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 22–24 (2005)

    Article  ADS  Google Scholar 

  14. Chen, Y., Zhong-Xiao, M., Yun-Jie, X.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24, 19–22 (2007)

    Article  ADS  Google Scholar 

  15. Zhang, Z.J.: Deterministic secure direct bidirectional communication protocol. arxiv:quant-ph/0403186 (2004)

  16. Yang, Y., Wen, Q.: Quasi-secure quantum dialogue using single photons. Sci. China Ser. G 50, 558–562 (2007)

    Article  Google Scholar 

  17. Zhong-Xiao, M., Yun-Jie, X.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23, 1680–1682 (2006)

    Article  ADS  Google Scholar 

  18. Tian-Yu, Y., Li-Zhen, J.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30, 040305 (2013)

    Article  Google Scholar 

  19. Zhi-Hao, L., Han-Wu, C.: Comment on improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30, 079901 (2013)

    Article  ADS  Google Scholar 

  20. Tian-Yu, Y., Li-Zhen, J.: Reply to the comment on improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30, 079901 (2013)

    Article  ADS  Google Scholar 

  21. Chang, C.H., Luo, Y.P., Yang, C.W., Tzonelih, H.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14, 3515–3522 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process. 16, 147 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information: 10th anniversary edition. Chin. Phys. Lett. 30, 079901 (2011)

    Google Scholar 

  24. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, A., Balakrishnan, S. Controller-independent quantum bidirectional communication using non-maximally entangled states. Quantum Inf Process 19, 133 (2020). https://doi.org/10.1007/s11128-020-02628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02628-2

Keywords

Navigation