Skip to main content
Log in

Quantum image steganography algorithm based on modified exploiting modification direction embedding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel quantum steganography scheme is investigated based on efficient embedding algorithm of modified exploiting modification direction in this paper, which embeds two \( 2^{n} \times 2^{n} \) binary images (secret information) into a \( 2^{n} \times 2^{n} \) color image (carrier image). To improve the security of the secret information and enhance the robustness of the proposed scheme, a \( 2^{n} \times 2^{n} \) binary image (secret key) is generated according to the exclusive or operation of two secret images. The secret key acts as the control key of choosing two channels from the carrier image’s three channels of R, G and B (i.e., R, G or R, B channels chose as the pixel-group) to hide the secret information. In addition, the effective quantum circuits for investigated quantum steganography scheme are illustrated to better understanding the procedure of embedding algorithm. The experiment results simulated on the classical computer with MATLAB environment, and the numerical analyses demonstrate that the presented algorithm has good performance on imperceptibility and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ingemar, J.C., Miller, M.L., Jeffrey, A.B., et al: Digital Watermarking and Steganography (2008)

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Venegas-Andraca, SE.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference of Quantum Information and Computation, pp. 134–147 (2003)

  6. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    MathSciNet  Google Scholar 

  7. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process 12(8), 2833–2860 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Li, H.S., Zhu, Q.X., Zhou, R.G., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Yuan, S.Z., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Li, H.S., Chen, X., Xia, H., et al.: A quantum image representation based on bitplanes. IEEE Access 6, 62396–62404 (2018)

    Google Scholar 

  14. Li, H.S., Fan, P., Xia, H.Y., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 66(1), 341–354 (2019)

    Google Scholar 

  15. Wang, L., Ran, Q., Ma, J., et al.: QRCI: a new quantum representation model of color digital images. Opt. Commun. 438(1), 147–158 (2019)

    ADS  Google Scholar 

  16. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    MATH  Google Scholar 

  18. Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Zhou, R.G., Luo, J., Liu, X.A., Zhu, C.M., Wei, L., Zhang, X.F.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Google Scholar 

  21. Heidari, S., Pourarian, M.R., Gheibi, R., et al.: Quantum red-green-blue image steganography. Int. J. Quantum Inf. 15(05), 1750039 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 1–28 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Li, P.C., Liu, X.D.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf. 16(02), 1850020 (2018)

    MATH  Google Scholar 

  24. Hu, W.W., Zhou, R.G., Ahmed, E.R., Jiang, S.X.: Quantum image watermarking algorithm based on haar wavelet transform. IEEE Access 7, 121303–121320 (2019)

    Google Scholar 

  25. Qu, Z., Cheng, Z., Liu, W., Wang, X.: A novel quantum image steganography algorithm based on exploiting modification direction. Multimed. Tools Appl. 78(7), 7981–8001 (2019)

    Google Scholar 

  26. Zhang, X., Wang, S.: Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10(11), 781–783 (2006)

    Google Scholar 

  27. Zhou, R.G., Hu, W.W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 1–21 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, R.G., Hu, W.W., Luo, G.F., Liu, X.A., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17(7), 166 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  29. David, S.O., Ramos, R.: Quantum bit string comparator: circuits and applications quantum bit string comparator: circuits and applications. Quantum Comput. Comput. 7, 26 (2007)

    Google Scholar 

  30. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3488 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Plan under Grant No. 2018YFC1200200 and 2018YFC1200205, and Scientific Research Fund of Hunan Provincial Education Department under Grant No. 18B420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri-Gui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, WW., Zhou, RG., Liu, XA. et al. Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf Process 19, 137 (2020). https://doi.org/10.1007/s11128-020-02641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02641-5

Keywords

Navigation