Skip to main content
Log in

New look on quantum representation of images: Fourier transform representation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Image representation plays an essential role in quantum image processing and quantum computer vision in numerous, computationally expensive applications. Quantum image processing is a new discipline with tremendous potential. However, there is a critical problem in applying quantum computing to process data: how to represent data (signal, image, and video data) using quantum states without losing information. In this paper, we describe briefly a few known models for image representation and propose a new approach for representing discrete signals and images in quantum computing, by mapping the input data into the unit circle, or only part of the circle. Such a representation allows for introducing the concept of the Fourier transform qubit representation. For grayscale images, we consider the similar concept of the Fourier representation of images and, for color images, we introduce models with the concept of the 3-point DFT of color qubits. The circuits for proposed signal and image representations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Yongquan, C., Xiaowei, L., Nan, J.: A survey of quantum image representations. Chin. J. Electron. 27(4), 9 (2018)

    Google Scholar 

  3. Yan, F., Iliyasu, A.M., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Venegas-Andraca S., Bose S.: Storing, processing, and retrieving an image using quantum mechanics, in Proc. SPIE Conf. Quantum Information and Computation, 134–147 (2003)

  5. Latorre J.: Image compression and entanglement, arXiv:quant-ph/0510031, 2005

  6. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inform. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hai-Sheng Li, Qingxin Z., Ri-Gui Z., Ming-Cui Li, Lan S., Hou I.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases, Information Sciences 273, 212-232 (2014)

  9. Hai-Sheng, L., Shuxiang, S., Ping, F., Huiling, P., Hai-ying, X., Yan, L.: Quantum vision representations and multi-dimensional quantum transforms. Inf. Sci. 502, 42–58 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Proc. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jiang, N., Wu, W.Y., Wang, L., et al.: Quantum image pseudo color coding based on the density-stratified method. Quantum Inf. Proc. 14(5), 1735–1755 (2015)

    Article  ADS  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River, New Jersey (2002)

    Google Scholar 

  13. Cleve R., Watrous J.: Fast Parallel Circuits for the Quantum Fourier Transform, Proceedings of IEEE Symposium on the Theory of Computing, 526-535 (2000)

  14. Grigoryan A.M., Agaian S.S.: Paired Quantum Fourier Transform with log2N Hadamard Gates, Quantum Information Processing, p. 26 (2019) 18: 217

  15. Amraoui A.E., Masmoudi L., Ez-Zahraouy H., Amraoui Y.E.: Quantum edge detection based on SHANNON entropy for medical images, 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), p. 6 (2016)

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Ulyanov S., Petrov S.: Quantum face recognition and quantum Visual Cryptography: Models and Algorithms, Electronic Journal, System Analysis in Science and Education, no. 1, p. 17 (2012)

  18. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16, 42–56 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Grigoryan A.M., Agaian S.S.: Quaternion and Octonion Color Image Processing with MATLAB, SPIE, PM279 (2018)

  20. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf Process 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf Process 17(12), 338 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artyom M. Grigoryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryan, A.M., Agaian, S.S. New look on quantum representation of images: Fourier transform representation. Quantum Inf Process 19, 148 (2020). https://doi.org/10.1007/s11128-020-02643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02643-3

Keywords

Navigation