Skip to main content
Log in

Practical quantum digital signature with configurable decoy states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum digital signature (QDS) provides an effective method to guarantee the information-theoretical security of signature messages. Here, we propose a scheme of implementing QDS with configurable decoy states. In this scheme, the legitimate parties configure the number of decoy states to maximize the signature rate and/or simplify the experimental operation in practical scenarios. Considering different optical intrinsic errors, we investigate the performance of a typical QDS system in one and two decoy-state cases and give the corresponding guide to configure decoy states, which we expect would be valuable for researchers to design QDS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  3. Gottesman, D., Chuang, I.: Quantum digital signatures. Preprint arXiv:quant-ph/0105032 (2001)

  4. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  Google Scholar 

  5. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91, 042304 (2015)

    Article  ADS  Google Scholar 

  6. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)

    Article  ADS  Google Scholar 

  7. Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  9. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

  10. Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  11. An, X.B., Zhang, H., Zhang, C.M., Chen, W., Wang, S., Yin, Z.Q., Wang, Q., He, D.Y., Hao, P.L., Liu, S.F., Zhou, X.Y., Guo, G.C., Han, Z.F.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Opt. Lett. 44, 139–142 (2019)

    Article  ADS  Google Scholar 

  12. Zhang, C.H., Zhou, X.Y., Ding, H.J., Zhang, C.M., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018)

    Article  ADS  Google Scholar 

  13. Yin, H.L., Fu, Y., Liu, H., Tang, Q.J., Wang, J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  14. Yin, H.L., Wang, W.L., Tang, Y.L., Zhao, Q., Liu, H., Sun, X.X., Zhang, W.J., Li, H., Puthoor, I.V., You, L.X., Andersson, E., Wang, Z., Liu, Y., Jiang, X., Ma, X., Zhang, Q., Curty, M., Chen, T.Y., Pan, J.W.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)

    Article  ADS  Google Scholar 

  15. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  16. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  17. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  18. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995)

    Article  ADS  Google Scholar 

  19. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  ADS  Google Scholar 

  20. Rusca, D., Boaron, A., Grünenfelder, F., Martin, A., Zbinden, H.: Finite-key analysis for the 1-decoy state QKD protocol. Appl. Phys. Lett. 112, 171104 (2018)

    Article  ADS  Google Scholar 

  21. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M., Nolan, D., Martin, A., Zbinden, H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    Article  ADS  Google Scholar 

  22. Bacco, D., Vagniluca, I., Lio, B., Biagi, N., Frera, A., Calonico, D., Toninelli, C., Cataliotti, F., Bellini, M., Oxenløwe, L., Zavatta, A.: Field trial of a three-state quantum key distribution scheme in the Florence metropolitan area. EPJ Quantum Technol. 6, 5 (2019)

    Article  Google Scholar 

  23. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  24. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 2, 39–48 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grants 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China under Grants 11847215, 61705110, 11774180, the China Postdoctoral Science Foundation under Grants 2019T120446, 2018M642281, the Natural Science Foundation of Jiangsu Province under Grant BK20170902, and the Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 2018K185C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CM., Zhu, Y., Chen, JJ. et al. Practical quantum digital signature with configurable decoy states. Quantum Inf Process 19, 151 (2020). https://doi.org/10.1007/s11128-020-02648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02648-y

Keywords

Navigation