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Controlling quantum coherence of a two-component Bose-Einstein condensate via an impurity atom
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Department of Physics and SICQEA, Hunan Normal University, Changsha 410081, China

We propose a scheme to control quantum coherence of a two-component Bose-Einstein condensate (BEC)

by a single impurity atom immersed in the BEC. We show that the single impurity atom can act as a single

atom valve (SAV) to control quantum coherence of the two-component BEC. It is demonstrated that the SAV

can realize the on-demand control over quantum coherence at an arbitrary time. Specially, it is found that the

SAV can also control higher-order quantum coherence of two-component BEC. We investigate the long-time

evolution of quantum coherence of the two-component BEC. It is indicated that the single impurity atom can

induce collapse and revival phenomenon of quantum coherence of the two-component BEC. Collapse-revival

configurations of quantum coherence can be manipulated by the initial-state parameters of the impurity atom

and the impurity-BEC interaction strengths.

PACS numbers: 03.75.Mn, 03.65.Ta, 03.75.Kk

I. INTRODUCTION

Quantum coherence is of fundamental and practical signif-

icance for the development of quantum physics and quantum

technologies, and it has been recognized as an important phys-

ical resource [1, 2]. Recently, the theory of quantum coher-

ence as a resource has been established by virtue of quantum

resource theory to quantify the usefulness of quantum coher-

ence [3]. Controlling quantum coherence in many-body sys-

tems is highly desirable since quantum coherence reveals the

essence of entanglement and plays a central role in a lot of

physical phenomena and applications, such as quantum com-

putation [4, 5], quantum metrology [6–9], quantum channel

discrimination [10–12], quantum phase transitions [13, 14],

and quantum thermodynamics [15–18].

With the rapid experimental progress in controlling ultra-

cold quantum gases, multicomponent Bose-Einstein conden-

sate (BEC) has now been an active research field in cold

atomic physics. Since production of the first binary mixture

of condensates consisting of two hyperfine states (|F,m f 〉 =
|1,−1〉 and |2, 2〉) of 87Rb [19], the two-component BEC has

received intensive study in experiments and theories subse-

quently [20–25]. A variety of dynamical behaviors have been

observed in the two-component BEC [20–23]. Meanwhile, it

has been predicted that the two-component Bose gas may ex-

hibit exotic quantum state structures [26–32] as well as inter-

esting dynamical properties, such as population oscillations

between the two states [20, 33], quantum self-trapping [34],

and quantum correlation effects [35–38].

Recently, much attention has been paid to individual im-

purities interacting with BEC due to numerous applications

in probing strongly correlated quantum many-body states

[39, 40], quantum state engineering [41–50], and quantum

metrology [51, 52]. In present paper, motivated by the recent

progress impurity-doped BEC , we consider a two-level impu-
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rity atom which is used to control quantum coherence of the

two-component BEC. We demonstrate that the single impu-

rity atom forms a single atom valve to control quantum coher-

ence of the two-component BEC. We show that the impurity

atom can induce quantum collapse and revival phenomenon

for quantum coherence of the two-component BEC.

The paper is organized as follows. In Sec. II, we intro-

duce our physical model about single two-level impurity atom

immersed in two-component BEC. In Sec. III, we show a

quantum valve effect induced by the impurity atom. We show

that the single impurity atom can act as a single atom valve

of quantum coherence to control quantum coherence of the

two-component BEC and the valve functionals of the quan-

tum valve are demonstrated in detail. In Sec. IV, we study

the long-time quantum dynamics of quantum coherence for

the two-component BEC to reveal impurity-induced collapse

and revival phenomenon for quantum coherence of the two-

component BEC. Finally, the concluding section, Sec. V, dis-

cusses our main results.

II. IMPURITY-DOPED TWO-COMPONENT BEC MODEL

In this section we introduce our model system by specifying

the Hamiltonian of the impurity-doped two-component BEC

system. We consider a two-component BEC in which a sin-

gle impurity atom is immersed. The two-component BEC is

a binary mixture of condensates consisting of two hyperfine

states, such as (|F,m f 〉 = |1,−1〉, |2, 2〉) or (|F,m f 〉 = |1,−1〉,
|2, 1〉) states of 87Rb . The Hamiltonian of the two-component

BEC is given by (~ = 1)

HB =

∫

dr3Ψ
†
i
(r)
[

−
1

2m
∇2 + Vi(r) +

Ui

2
Ψ
†
i
(r)Ψi(r)

+
Ui j

2
Ψ
†
j
(r)Ψ j(r)

]

Ψi(r), (1)

where Ψi(r) is the field annihilator operator for the compo-

nent i at the position r, Vi(r) is the external trapping poten-

tial. Interaction between ultracold atoms are described by
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a nonlinear self-interaction term Ui = 4πai/m and a term

that corresponds to the nonlinear interaction between differ-

ent components Ui j = 4πai j/m, where ai is the s-wave scat-

tering length of component i and ai j is that between ith and

jth-component condensate, m is the single atom mass in the

condensate, i, j = 1, 2.

When the two-component BEC is confined in a deep po-

tential [53, 54], we can take the single-mode approximation

[55, 56] Ψi(r) ≈ γϕi(r), where γ = a, b and ϕi(r) are the an-

nihilation operator and the mode function for the component

i, respectively. Thus, the Hamiltonian of the two-component

BEC can be written as

HB = ω1a†a + ω2b†b + χ1(a†a)2 + χ2(b†b)2 + 2χ12a†ab†b,

(2)

where ωi is the effective harmonic oscillator frequency

corresponding to each BEC component in the absence

of interaction, the self-interaction strength is χ1(2) =
(

2πa1(2)/m
)

∫

dr3
∣

∣

∣ϕ1(2)(r)
∣

∣

∣

4
, and the inter-component interac-

tion strength is χ12 =
(

2πa12/m
)

∫

dr3
∣

∣

∣ϕ
†
1
(r)ϕ2(r)

∣

∣

∣

2
.

In our model system the impurity atom is an internal two

level system, which we write as an effective spin-1/2. In the

following we will also interpret this two-level system as a

qubit with two logical states |0〉 and |1〉. Cold atom collision

physics allows for a situation where the scattering lengths of

the impurity atom and atoms in the BEC are spin-dependent

[57]. The Hamiltonian of the single two-level impurity atom

is given by

Hs = ω0σz, (3)

where the Pauli operator σz is defined by σz = |1〉〈1| − |0〉〈0|.
The single impurity atom interacts with the two-component

BEC via coherent collisions with the following Hamiltonian

[39, 58]

HI = (σz + 1)(λ1a†a + λ2b†b), (4)

where the interacting strength is given by λi =

πaei

∫

dr3|φe(r)ϕi(r)|2/Mei with φe(r) being the wave

function of the impurity atom, aei the s-wave scattering length

between the impurity atom in the upper state |1〉 and the i-th

component BEC, and Mei = memi/(me+mi) the reduced mass

for impurity atom and BEC atom.

Hence, the total Hamiltonian of the impurity-doped two-

component BEC system can be written as

H =ω1a†a + ω2b†b + ω0σz + χ1(a†a)2 + χ2(b†b)2

+ 2χ12a†ab†b + (σz + 1)(λ1a†a + λ2b†b), (5)

where all the interaction strengths can be manipulated by

means of a Feshbach-resonance method [59–62].

In what follows, we will study quantum dynamics of quan-

tum coherence of the two-component BEC. We will show that

quantum coherence of the two-component BEC can be con-

trolled through manipulating initial states of the impurity atom

and its interaction with the condensed atoms. Specifically,

we will demonstrate that the single impurity atom forms a

single atom valve to control quantum coherence of the two-

component BEC, and find that the impurity atom can induce

quantum collapse and revival phenomenon of quantum coher-

ence in the two-component BEC system.

III. SINGLE-ATOM VALVE OF QUANTUM COHERENCE

FOR TWO-COMPONENT BEC

In this section we investigate the role of the single impurity

atom in controlling quantum coherence of the two-component

BEC through studying quantum coherence dynamics of the

impurity-doped two-component BEC. We will show that the

single impurity atom can act as a single atom valve of quan-

tum coherence to control quantum coherence of the two-

component BEC. We calculate the opening and closing degree

(OCD) of the single atom valve (SAV), and show that the SAV

can be completely opened and closed by varying initial states

of the impurity atom and/or impurity-BEC interactions.

Suppose that the two-component BEC and the impurity

atom are initially in a coherent state |α〉 ⊗ |β〉 and a coherent

superposition state cos η|1〉 + sin η|0〉, respectively. Then the

total initial state of the impurity-doped BEC system is given

by

|ψ(0)〉 = (cos η|1〉 + sin η|0〉) ⊗ |α〉 ⊗ |β〉, (6)

where |α〉 = D(α)|0〉 and |β〉 = D(β)|0〉 are two Glauber co-

herent states for the two-component BEC with the displace-

ment operators being given by D(α) = exp(αa† − α∗a) and

D(β) = exp(βb† − β∗b), respectively.

The wave function of the impurity-doped BEC system at a

time t is given by

|ψ(t)〉 = U(t)|ψ(0)〉, (7)

where the unitary time evolution operator U(t) = exp(−iHt) is

determined by the Hamiltonian (5).

Making use of Eqs. (5) and (6), it is straightforward to get

the total wave function of the impurity-doped BEC system at

a time t

|ψ(t)〉 = sin η|0〉 ⊗ |φ0(α, β)〉 + cos η|1〉 ⊗ |φ1(α, β)〉, (8)

where we have introduced generalized coherent states for bo-

son operators a and b [63–67]

|φ0(α, β)〉 = e−
|α|2+|β|2

2

∞
∑

n,m=0

e−iθ0(n,m)t α
nβm

√
n!m!
|n,m〉,

|φ1(α, β)〉 = e−
|α|2+|β|2

2

∞
∑

n,m=0

e−iθ1(n,m)t α
nβm

√
n!m!
|n,m〉, (9)

where the two running frequency functions are defined by

θ0(n,m) = −ω0 + ω1n + ω2m

+χ1n2 + χ2m2 + 2χ12nm,

θ1(n,m) = ω0 + (ω1 + 2λ1)n + (ω2 + 2λ2)m

χ1n2 + χ2m2 + 2χ12nm. (10)



3

Then, we can obtain the reduced density operator of the

two-component BEC by tracing out the impurity part with the

following form

ρ(t) = cos2 η|φ1(α, β)〉〈φ1(α, β)| + sin2 η|φ0(α, β)〉〈φ0(α, β)|.
(11)

The first-order quantum coherence of the two-component

BEC can be characterized by one element of the reduced

single-particle density matrix |ρ12| with definition [68]

C1 =
1

N
|〈b†a〉|, (12)

where N is the total number of atoms in the two-component

BEC.

From Eqs. (11) and (12), we can obtain the mean value

〈b†a〉 at a time t

〈b†a〉 = αβ∗
[

cos2 ηe−i2(λ1−λ2)t + sin2 η
]

e−|α|
2−|β|2

×e|α|
2e−i(2χ1−2χ12)t

e|β|
2e−i(−2χ2+2χ12)t

e−i(ω1−ω2+χ1−χ2)t.(13)

For the sake of simplicity, we assume that the initial-state

parameters α and β are real numbers. Making use of Eqs. (12)

and (13) we can get the analytical expression of the first-order

quantum coherence function

C1(t) =
αβ

α2 + β2

√

1 − sin2(2η) sin2(∆λt)

×e
α2

{

cos
[

2(χ1−χ12)t
]

−1

}

+β2

{

cos
[

2(χ2−χ12)t
]

−1

}

, (14)

where we have introduced the parameter ∆λ = λ1 − λ2, which

denotes the coupling strength difference between impurity and

each component condensate. From Eq. (14) we can see that

quantum coherence of the two-component BEC depends on

the initial-state parameter η of the impurity and the impurity-

BEC interaction strengths λi. Hence, one can control quantum

coherence of the two-component BEC by means of varying

the initial-state parameter of the impurity and the impurity-

BEC interaction.

From Eq. (14), we can see that quantum coherence of the

two-component BEC can be controlled through changing the

initial-state parameter of the impurity atom η and the coupling

strengths between the impurity atom and condensed atoms. In

the following, we will indicate that the impurity atom can act

as a quantum valve to control quantum coherence of the two-

component BEC. It is called as the single atom valve (SAV).

This SAV can be used to control the amount of quantum coher-

ence for the two-component BEC at any time in the dynamic

evolution of the system under our consideration.

In fact, in the absence of the impurity atom, from Eq. (14)

we can obtain quantum coherence of the two-component BEC

as

C̃1(t) =
αβ

α2 + β2
e
α2

{

cos
[

2(χ1−χ12)t
]

−1

}

+β2

{

cos
[

2(χ2−χ12)t
]

−1

}

,

(15)

which indicates that the dynamic evolution of quantum coher-

ence of the two-component BEC is periodical with the period

T = Max
{

π/|χ1 − χ12|, π/|χ2 − χ12|
}

.

−0.06 −0.03 0 0.03 0.06
k12

0

0.2

0.4

0.6

0.8

1.0

R 1
(τ
)

FIG. 1: (Color online) The OCD of the SAV with respect to the SAV

parameter k12 when η = π/4. The dot-dashed line, dashed line, and

solid line correspond to the scaled time being τ = 10π, 20π, and 30π,

respectively.

In order to measure the controlling degree of quantum co-

herence, we can introduce a concept of the opening-closing

degree (OCD) of the SAV, which is defined as the ratio be-

tween quantum coherence of the two-component BEC with

the impurity atom and that without the impurity atom

R1(t) =
C1(t)

C̃1(t)
, R1 ∈ [0, 1] (16)

which gives measurable information about the discharged

amount of the first-order quantum coherence of the two-

component BEC. The minimum value of the opening-closing

degree R1 is 0 and the maximum value is 1, which corresponds

to completely closing (switch-off) and fully opening (switch-

on) situation of the SAV, respectively.

Substituting Eqs. (14) and (15) into Eq. (16) we can get

R1(τ) =

√

1 − sin2(2η) sin2(k12τ), (17)

where we define the coupling strength difference ∆λ = k12χ12

in units of χ12 and the scaled time τ = χ12t with k12 and τ

being two dimensionless parameters. Obviously, the initial-

state parameter of the impurity atom η and the impurity-

BEC coupling parameter k12 are two characteristic parame-

ters of the SAV. From Eq. (17) we can see that one can re-

alize on-demand control over quantum coherence of the two-

component BEC through adjusting characteristic parameters

of the SAV. In particular, when η = nπ (n = 0, 1, 2, · · · ), we

have R1 = 1. This means that one can obtain the maximal

quantum coherence of the two-component BEC at an arbi-

trary time τ by adjusting only one characteristic parameter of

the SAV, the initial-state parameter of the impurity atom η.

Hence, the SAV can be fully opened at an arbitrary time.

We then show how to close the SAV. From Eq. (17) we can

see that when η = (2n + 1)π/4 (n = 0, 1, 2, · · · ), and k12τ =

(2n+1)π/2 (n = 0, 1, 2, · · · ), we can obtain R1 = 0. Therefore,
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FIG. 2: (Color online) The OCD of the SAV with respect to the SAV

parameter k12 and the scaled time τ when η = π/4.

the SAV can be completely closed at an arbitrary time through

changing two characteristic parameters of the SAV η and k12.

In order to show the controllable ability of the SAV for

quantum coherence of the two-component BEC at an arbi-

trary given time, in Fig. 1, we have plotted the OCD of the

SAV with respect to the SAV parameter k12 when η = π/4 for

a few particular times of τ = 10π, 20π, and 30π, respectively.

From Fig. 1 we can see that the SAV can continuously work

from a completely closed state to a fully opened state or vice

versa by changing the SAV parameter.

In Fig. 2 we have plotted the influence of the SAV tunable

parameter k12 on the controllable functional of the SAV when

η = π/4 in the dynamic evolution of the system. From Fig. 2

we can see that it is also possible to realize quantum coherence

control of the two-component BEC in the whole regime from

R1 = 0 to R1 = 1 through changing the controllable parameter

of the SAV k12 in the time domain 10π ≤ τ ≤ 30π.

In Fig. 3 we have plotted the influence of the SAV tunable

parameter η on the controllable functional of the SAV when

k12 = 0.05 in the dynamic evolution of the system. From Fig.

3 we can see that the SAV can be completely closed at the dip

points with R1 = 0.

Above analyses indicate that the single impurity atom im-

mersed in the two-component BEC can be used as the SAV

of the BEC to control first-order quantum coherence of the

two-component BEC efficiently. One can realize not only

switch-on and switch-off of quantum coherence of the two-

component BEC, but also on-demand control over the BEC

quantum coherence through adjusting characteristic parame-

ters of the SAV.

In what follows, we show that above SAV of first-

order quantum coherence of the two-component BEC is

also a SAV of higher-order quantum coherence of the two-

component BEC. The qth-order quantum coherence of the

two-component BEC can be defined by the following higher-

FIG. 3: (Color online) The OCD of the SAV with respect to the

initial-state parameter of the SAV η and the scaled time τ when the

SAV parameter k12 = 0.05.

order cross-correlation function [69]

Cq = N
∣

∣

∣〈b†qaq〉
∣

∣

∣, (q = 1, 2, 3, · · · ) (18)

where N is a normalization factor that ensures the maximum

value of Cq = 1 for the optimal case. The normalized ratio

gives measurable information about the discharged amount of

qth-order quantum coherence of the two-component BEC

Cq(t) = N(αβ)q

√

1 − sin2(2η) sin2(q∆λt)

×e
α2

{

cos
[

2q(χ1−χ12)t
]

−1

}

+β2

{

cos
[

2q(χ2−χ12)t
]

−1

}

. (19)

In the absence of the impurity atom, from Eq. (19) we can

obtain qth-order quantum coherence of the two-component

BEC as

C̃q(t) = N(αβ)qe
α2

{

cos
[

2q(χ1−χ12)t
]

−1

}

+β2

{

cos
[

2q(χ2−χ12)t
]

−1

}

.

(20)

Similar to the case of the first-order quantum coherence,

one can define the opening-closing degree of the SAV for the

qth-order quantum coherence of the two-component BEC as

the ratio between the qth-order quantum coherence of the two-

component BEC with the impurity atom and that without the

impurity atom

Rq(t) =
Cq(t)

C̃q(t)
, Rq ∈ [0, 1]. (21)

Substituting Eqs. (19) and (20) into Eq. (21) and after re-

scaling related parameters we can obtain the OCD of the SAV

for the qth-order quantum coherence of the two-component

BEC

Rq(τ) =

√

1 − sin2(2η) sin2(qk12τ), (22)
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which indicates that the SAV expression (22) about the first-

order quantum coherence of the two-component BEC can be

recovered when we take q = 1 in Eq. (22).

Through analyses similar to Eq. (17), from Eq. (22) we

can see that the single impurity atom immersed in the two-

component BEC can be used as the SAV of the BEC to control

higher-order quantum coherence of the two-component BEC

efficiently. One can realize not only switch-on and switch-

off function of higher-order quantum coherence of the two-

component BEC, but also on-demand control over the BEC

higher-order quantum coherence through adjusting character-

istic parameters of the SAV.

IV. IMPURITY-INDUCED COLLAPSE AND REVIVAL OF

QUANTUM COHERENCE

In this section, we investigate quantum dynamics of quan-

tum coherence of the two-component BEC. We show that the

single impurity atom in the two-component BEC can induce

periodic collapse and revival phenomenon of quantum coher-

ence of two-component BEC in the dynamic evolution. This

time evolution is a consequence of the quantization of the

BEC matter field and the nonlinear interaction between in-

dividual atoms. In some sense it can reflect the quantized

structure of the matter wave field and the collisions between

individual atoms.

For the sake of simplicity, we re-scale related parameters

in terms of χ12 as χ1 = k1χ12, χ2 = k2χ12, and ∆λ = k12χ12.

Then the expression of first-order quantum coherence of the

two-component BEC given by Eq. (14) becomes

C1(τ) =
αβ

α2 + β2

√

1 − sin2(2η) sin2(k12τ)

×eα
2[cos(2k′

1
τ)−1]+β2[cos(2k′

2
τ)−1], (23)

where τ = χ12t is the scaled time, k′
1
= k1 − 1 and k′

2
= k2 − 1.

From Eq. (23) we can find that in the absence of the impu-

rity atom quantum coherence of the two-component BEC has

the following simple form

C̃1(τ) =
αβ

α2 + β2
eα

2[cos(2k′
1
τ)−1]+β2[cos(2k′

2
τ)−1], (24)

which indicates that the dynamic evolution of quantum coher-

ence of the two-component BEC is a simple periodic oscilla-

tion with the period of T = Max
(

π/|k′
1
|, π/|k′

2
|
)

.

However, in the presence of the impurity atom from Eq.

(23) we can see that the impurity atom can modulate dynamic

evolution of quantum coherence of the two-component BEC,

and the whole modulation factor is given by the OCD R1(τ) =
√

1 − sin2(2η) sin2(k12τ). It is the impurity-atom modulation

that breaks down the simple periodic oscillation of quantum

coherence of the two-component BEC and leads to collapse

and revival of quantum coherence of the BEC.

In what follows, we show that quantum coherence of the

BEC exhibits collapse and revival phenomenon in the long-

time evolution when one of the impurity atom and the BEC is

（a）

（b）

（c）

（d）

（e）

（f）

t´10-3 t´10-3

FIG. 4: (Color online) Quantum coherence of two-component con-

densates versus scaled time τ when condensates self-interaction pa-

rameters k1 = 1.03, k2 = 0.97 and the atom number of the BEC

α2 = β2 = 105. When η = π/4, and k12 = 0, 1.88 × 10−3, and

3.75× 10−3, the quantum coherence evolution of the two-component

condensates is given by figs. (a), (b), and (c), respectively. When

k12 = 3.75 × 10−3, and η = π/12, π/6, π/5, the quantum coherence

evolution of the two-component condensates is given by figs. (d),

(e), and (f), respectively.

a rapidly changing part and another is a slowly changing part.

Without loss of generality, we consider the situation of α = β.

In this case, quantum coherence of the BEC given by Eq. (23)

becomes

C1(τ) =
1

2

√

1 − sin2(2η) sin2(k12τ)e−2α2[sin2(k′
1
τ)+sin2(k′

2
τ)].

(25)

In order to observe the impurity atom how to modulate col-

lapse and revival of quantum coherence of the two-component

BEC, in Fig. 4 we have plotted the time evolution of quan-

tum coherence of the two-component BEC when the BEC is

a rapidly changing part while the impurity atom is a slowly

changing part with |k12| ≪ (|k′
1
|, |k′

2
|). From Fig. 4 we can see

that collapse and revival phenomenon takes place in the time

evolution of quantum coherence of the two-component BEC

in the presence of the atom impurity. From Fig. 4(a) we can

see that the time evolution of quantum coherence of the two-

component BEC is a simple periodic oscillation in the absence

of the impurity atom. Fig. 4(a)-4(c) indicate the time evolu-

tion of quantum coherence of the two-component BEC when

η = π/4, |k′
1
| = |k′

2
| = 0.03 (k1 = 1.03, k2 = 0.97) and α2 = 105

for different values of k12 = 0, 1.88 × 10−3, 3.75 × 10−3, re-

spectively. From Fig. 4(a)-4(c) we can see that one can con-

trol collapse-revival configuration of quantum coherence of

the two-component BEC in the dynamical evolution by vary-

ing interaction strength k12. In fact, from Eq. (25) we can see

that for the parameter values in Fig. 4(a)-4(c) the envelope
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curve of the quantum coherence oscillations is determined by

the function sin2(k12τ). Hence, the collapse and revival time

is τc = τr = π/|k12|.

FIG. 5: (Color online) The long-time evolution of quantum coher-

ence of the two-component BEC when BEC self-interaction parame-

ters k′
1
= −k′

2
= 0.5×10−5, the initial-state parameters α2 = β2 = 105,

and η = π/4. The dashed line and the solid line correspond to k12 = 0

and 0.06, respectively.

Fig. 4(d)-4(f) indicate the influence of the initial-state pa-

rameter of the impurity atom on the collapse and revival of

quantum coherence of the two-component BEC when |k′
1
| =

|k′
2
| = 0.03 and k12 = 3.75 × 10−3 for different values of

η = π/12, π/6, π/5, respectively. Making use of Eq. (25)

from Fig. 4(d)-4(f) we can see that the dip value of quantum

coherence of the BEC in the collapse regime decreases with

the increase of the initial-state parameter η in the regime of

0 ≤ η ≤ π/4.

We now consider the situation that the impurity atom is a

rapidly changing part while the BEC is a slowly changing part.

In this case we have |k12| ≫ (|k′
1
|, |k′

2
|) with k12 and η being

two control parameters. In Fig. 5 and Fig.6 we have plot-

ted the long-time evolution of quantum coherence of the two-

component BEC when the impurity atom is a rapidly changing

part while the BEC is a slowly changing part with in Fig. 5 the

BEC self-interaction parameters take k′
1
= −k′

2
= 0.5 × 10−5,

the initial-state parameters take α2 = β2 = 105, and η = π/4.

The dashed line and the solid line correspond to k12 = 0

and 0.06, respectively. In Fig. 6 interaction parameters take

k′
1
= −k′

2
= 0.5 × 10−5 and k12 = 0.06, the BEC initial-

state parameters take α2 = β2 = 105. The dashed line and

the solid line correspond to η = 0 and π/6, respectively. In

Fig. 5 the time evolution of quantum coherence of the two-

component BEC without the impurity atom (k12 = 0) is given

by the dashed line, which is just the envelope line of quantum

coherence of the two-component BEC in the presence of the

impurity atom (k12 = 0.06). A similar result is also reflected

in Fig. 6.

From Fig. 5 and Fig. 6 we can see that collapse and revival

phenomenon takes place in the long-time evolution of quan-

tum coherence of the two-component BEC. Fig. 5 indicates

the dependence of the quantum collapse and revival on the

impurity-BEC interaction k12 while Fig.6 reflects the depen-

dence of the quantum collapse and revival on the initial-state

parameter η. Fig. 5 and Fig. 6 indicate that the envelope of the

quantum coherence oscillations collapses to nearly zero with

the time evolution. However, as time increases the collapsed

quantum coherence can revive till to reaching the maximal

coherence. The behavior of collapse and revival of quantum

coherence is repeated and the envelope configuration of the

oscillations remains unchanged as time increases.

FIG. 6: (Color online) The long-time evolution of quantum co-

herence of the two-component BEC when interaction parameters

k′
1
= −k′

2
= 0.5 × 10−5 and k12 = 0.06, the BEC initial-state parame-

ters α2 = β2 = 105. The dashed line and the solid line correspond to

η = 0 and π/6, respectively.

Comparing Fig. 5 with Fig. 6 we can find that the collapse

and revival of quantum coherence controlled by the impurity-

BEC interaction k12 has the same envelope as that controlled

by the initial-state parameter η. This implies that the k12-

controlled and η-controlled collapse and revival phenomena

have the same collapse time and revival time, but they exhibit

completely different internal oscillation structures. It should

be pointed that the BEC matter wave field has a quantized

structure owing to the granularity of the discrete underlying

atoms [70]. Collapse and revival phenomenon of quantum co-

herence for the two-component BEC is a manifestation of the

quantum nature of the matter-wave field. This point is just

like collapse and revival phenomenon of the atomic inversion

in the Jaynes-Cummings model for the cavity QED, it reveals

the quantum nature of the optical field [71, 72]. Instead of

the simple oscillations of quantum coherence found in the ab-

sence of the impurity atom, the collapse and revival of quan-

tum coherence of the two-component BEC takes place only in

the presence of the impurity atom. In this sense the impurity

atom can be regarded as a probe to explore the quantum nature

of the BEC matter-wave field.

V. SUMMARY AND CONCLUSION

We have studied a scheme utilizing a single impurity atom

to control quantum coherence of the two-component BEC. We

have shown that the single impurity atom can act as a SAV to

control quantum coherence of the two-component BEC. The

SAV can be fully opened and completely closed by varying

initial states of the impurity atom and/or impurity-BEC in-

teractions. In particular, it has been demonstrated that the

SAV can realize the on-demand control over quantum coher-

ence of the two-component BEC at an arbitrary time. It has

been found that the SAV can control not only first-order quan-

tum coherence but also higher-order quantum coherence of

two-component BEC. We have investigated the long-time dy-

namic evolution of quantum coherence of the two-component
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BEC. It has been indicated that the single impurity atom im-

mersed in the two-component BEC can induce periodic col-

lapse and revival phenomenon of quantum coherence of two-

component BEC in the dynamic evolution. It has been found

that collapse-revival configurations of quantum coherence can

be manipulated by the initial-state parameters of the impurity

atom and the impurity-BEC interaction strengths. This col-

lapse and revival phenomenon is a consequence of the quan-

tization of the BEC matter field and the nonlinear interaction

between individual atoms, it can reflect the quantized structure

of the matter wave field and the collisions between individual

atoms. It also may provide information on the long-time en-

tangled dynamics between two components of the BEC.
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[69] B. Opanchuk, L. Rosales-Zárate, R. Y. Teh, and M. D. Reid,

Quantifying the mesoscopic quantum coherence of approxi-

mate NOON states and spin-squeezed two-mode Bose-Einstein

condensates, Phys. Rev. A 94, 062125 (2016).

[70] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Collapse
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