Skip to main content
Log in

Improving the performance of decoy-state quantum digital signature with single-photon-added coherent sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum digital signature (QDS) in principle can provide the information-theoretic security based on the laws of quantum mechanics. The scheme of quantum digital signature that does not require trusted quantum channels has been presented. However, the performance in both signature rate and transmission distance remains to be improved. In this paper, we present a scheme on implementing the single-photon-added coherent state (SPACS) into QDS. We use the BB84 protocol as an example and compare its performance with the case of using the weak coherent state (WCS). Our simulation results indicate that the performance of the QDS system utilizing SPACS can greatly exceed those using WCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175. IEEE, New York (1984)

  4. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)

    Article  ADS  Google Scholar 

  5. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  6. Lucamarini, M., Yuan, Z., Dynes, J., Shields, A.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  7. Wang, S., Yin, Z.Q., Chen, W., He, D.Y., Song, X.T., Li, H.W., Zhang, L.J., Zhou, Z., Guo, G.C., Han, Z.F.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photonics 9, 832 (2015)

    Article  ADS  Google Scholar 

  8. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  9. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032

  10. Arrazola, J.M., Lütkenhaus, N.: Quantum communication with coherent states and linear optics. Phys. Rev. A 90, 042335 (2014)

    Article  ADS  MATH  Google Scholar 

  11. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)

    Article  ADS  Google Scholar 

  12. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  Google Scholar 

  13. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91, 042304 (2015)

    Article  ADS  Google Scholar 

  14. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

  15. Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93, 012329 (2016)

    Article  ADS  Google Scholar 

  16. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)

    Article  ADS  Google Scholar 

  17. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  18. Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117, 100503 (2016)

    Article  ADS  Google Scholar 

  19. Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883 (2016)

    Article  ADS  Google Scholar 

  20. Yin, H.L., Wang, W.L., Tang, Y.L., Zhao, Q., Liu, H., Sun, X.X., Zhang, W.J., Li, H., Puthoor, I.V., You, L.X., Andersson, E., Wang, Z., Liu, Y., Jiang, X., Ma, X., Zhang, Q., Curty, M., Chen, T.Y., Pan, J.W.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)

    Article  ADS  Google Scholar 

  21. Yin, H.L., Fu, Y., Liu, H., Liu, Q.J., Wang, X.J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  22. Roberts, G.L., Lucamarini, M., Yuan, Z.L., Dynes, J.F., Comandar, L.C., Sharpe, A.W., Shields, A.J., Curty, M., Puthoor, I.V., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  23. Zhang, C.H., Zhou, X.Y., Ding, H.J., Zhang, C.M., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018)

    Article  ADS  Google Scholar 

  24. An, X.B., Zhang, H., Zhang, C.M., Chen, W., Wang, S., Yin, Z.Q., Wang, Q., He, D.Y., Hao, P.L., Liu, S.F., Zhou, X.Y., Guo, G.C., Han, Z.F.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system: erratum. Opt. Lett. 44, 139 (2019)

    Article  ADS  Google Scholar 

  25. Chen, J.M., Zhang, H., Zhou, X.Y., Zhang, C.M., Wang, Q.: Practical decoy-state quantum digital signature with optimized parameters. Phys. A 535, 122341 (2019)

    Article  MathSciNet  Google Scholar 

  26. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  27. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  28. Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005)

    Article  ADS  Google Scholar 

  29. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat. 2, 39 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zavatta, A., Viciani, S., Bellini, M.: Non-classical field characterization by high-frequency, time-domain quantum homodyne tomography. Laser Phys. Lett. 3, 3 (2006)

    Article  ADS  Google Scholar 

  31. Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833 (2010)

    Article  ADS  Google Scholar 

  32. Bellini, M., Coelho, A.S., Filippov, S.N., Manko, V.I., Zavatta, A.: Towards higher precision and operational use of optical homodyne tomograms. Phys. Rev. A 85, 052129 (2012)

    Article  ADS  Google Scholar 

  33. Filippov, S.N., Manko, V.I., Coelho, A.S., Zavatta, A., Bellini, M.: Single-photon-added coherent states: estimation of parameters and fidelity of the optical homodyne detection. Phys. Scr. T 153, 014025 (2013)

    Article  ADS  Google Scholar 

  34. Shringarpure, S.U., Franson, J.D.: Generating photon-added states without adding a photon. Phys. Rev. A 100, 043802 (2019)

    Article  ADS  Google Scholar 

  35. Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)

    Article  ADS  Google Scholar 

  36. Wang, D., Li, M., Guo, G.C., Wang, Q.: An improved scheme on decoy-state method for measurement-device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)

    Article  ADS  Google Scholar 

  37. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  38. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  40. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  41. Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  42. Wang, Q., Chen, W., Xavier, G., Swillo, M., Zhang, T., Sauge, S., Tengner, M., Han, Z.F., Guo, G.C., Karlsson, A.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  43. Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Wang: obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 96, 052337 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Key R&D Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 11774180, 61590932, 61705110, 11847215, and the Leading-edge technology Program of Jiangsu Natural Science Foundation (BK20192001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JJ., Zhang, CH., Chen, JM. et al. Improving the performance of decoy-state quantum digital signature with single-photon-added coherent sources. Quantum Inf Process 19, 198 (2020). https://doi.org/10.1007/s11128-020-02695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02695-5

Navigation