Skip to main content
Log in

Nonclassical photon statistics and bipartite entanglement generation of excited coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have studied the effect of a beam splitter on the excited coherent states, which are an intermediate state between the fock state and the coherent state. These states are obtained due to successive elementary one-photon excitations of a coherent state. We have used linear entropy to measure the entanglement generated through a beam splitter when a single-mode excited coherent state is injected at each input port of the beam splitter. We have used our very generalized results to study the possible generation of entanglement for few more specific cases also. Furthermore, we have also studied the nonclassical photon statistics of the output field through the Mandel’s Q parameter and have found the correlation between the photon statistics and the entanglement of the output state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  2. Schrodinger, E.: The present status of quantum mechanics. Naturwissenschaften 23, 807 (1935)

    ADS  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers systems and signal processing, vol 175, p. 8 (1984)

  7. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Google Scholar 

  8. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Sudharshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    ADS  MathSciNet  Google Scholar 

  10. Titulaer, U.M., Glauber, R.J.: Correlation functions for coherent fields. Phys. Rev. 140, B676 (1965)

    ADS  MathSciNet  Google Scholar 

  11. Mandel, L.: Non-classical states of the electromagnetic field. Phys. Scr. T12, 34 (1986)

    ADS  Google Scholar 

  12. Wang, X.: Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)

    ADS  MathSciNet  Google Scholar 

  13. Zou, X.T., Mandel, L.: Photon-antibunching and sub-Poissonian photon statistics. Phy. Rev A. 41, 475 (1990)

    ADS  Google Scholar 

  14. Tan, S.M., Walls, D.F., Collett, M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252 (1991)

    ADS  Google Scholar 

  15. Toth, G., Simon, C., Cirac, J.I.: Entanglement detection based on interference and particle counting. Phys. Rev. A 68, 062310 (2003)

    ADS  Google Scholar 

  16. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    ADS  Google Scholar 

  17. Gershenfeld, N., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 235 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    ADS  Google Scholar 

  19. Paris, M.G.A.: Entanglement and visibility at the output of a Mach–Zehnder interferometer. Phys. Rev. A 59, 1615 (1999)

    ADS  Google Scholar 

  20. Kim, M.S., Son, W., Buzek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phy. Rev A 65, 032323 (2002)

    ADS  Google Scholar 

  21. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    ADS  Google Scholar 

  23. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  24. Berrada, K., El Baz, M., Saif, F., Hassouni, Y., Mnia, S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A Math. Theor. 42, 285306 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Gerry, C.C., Benmoussa, A.: Beam splitting and entanglement: generalized coherent states, group contraction, and the classical limit. Phys. Rev. A 71, 062319 (2005)

    ADS  Google Scholar 

  26. Milivojevic, M.: Maximal thermal entanglement using three-spin interactions. Quantum Inf. Process. 18, 48 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Park, D.: Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Quantum Inf. Process. 18, 172 (2019)

    ADS  MathSciNet  Google Scholar 

  28. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Almeida, M.P., de Melo, F., HorMeyll, M., Salles, A., Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L.: Environment-induced sudden death of entanglement. Science 316, 579 (2007)

    ADS  Google Scholar 

  31. Schroedinger, E.: Der stetigeÜ bergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 664 (1926)

    ADS  Google Scholar 

  32. Jurco, B.: On coherent states for the simplest quantum groups. Lett. Math. Phys. 21, 51 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Dodonov, V.V.: ’Nonclassical’ states in quantum optics: a ’squeezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002)

    ADS  MathSciNet  Google Scholar 

  34. Kimble, H.J.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    ADS  Google Scholar 

  35. Teich, M.C., Saleh, B.E.A.: Observation of sub-Poisson Franck–Hertz light at 253.7 nm. J.Opt. Soc. Am. B 2, 275 (1985)

    ADS  Google Scholar 

  36. Hong, C.K., Mandel, L.: Higher-order squeezing of a quantum field. Phys. Rev. Lett. 54, 323 (1985)

    ADS  Google Scholar 

  37. Ling-An, Wu, Kimble, H.J., Hall, J.L., Huifa, Wu: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett 57, 2520 (1986)

    ADS  Google Scholar 

  38. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    ADS  Google Scholar 

  39. Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

    ADS  Google Scholar 

  40. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 497 (1991)

    ADS  Google Scholar 

  41. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    ADS  Google Scholar 

  42. Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820 (2005)

    ADS  Google Scholar 

  43. Yang, C., Li, F.-L.: Nonclassicality of photon-subtracted and photon-added- then-subtracted Gaussian states. J. Opt. Soc. Am. B 26(4), 830 (2009)

    ADS  MathSciNet  Google Scholar 

  44. Parigi, V., Zavatta, A., Bellini, M.: Manipulating thermal light states by the controlled additon and subtraction of single photons. Laser Phys. Lett. 5(3), 246 (2008)

    ADS  Google Scholar 

  45. Pinheiro, P.V.P., Ramos, R.V.: Quantum communication with photon-added coherent states. Quantum Inf. Process. 12, 537 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Singh, G., Choudhary, A.: Excitation of coherent states: wave function development and analysis. arXiv:1412.0841 [quant-ph] (2014)

  47. Scully, M.O., Zubairy, M.: Quantum Optics, vol. 630. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  48. Markham, D., Vedral, V.: Classicality of spin-coherent states via entanglement and distinguishability. Phys. Rev. A 67, 042113 (2003)

    ADS  Google Scholar 

  49. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 439 (1999)

    ADS  Google Scholar 

  50. Wang, D., Li, M., Zhu, F., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)

    ADS  Google Scholar 

  51. Zhang, J.-S., Xu, J.-B.: Entanglement and nonlocality of photon-added entangled coherent states and quantum probabilistic teleportation. Phys. Scr. 79, 025008 (2009)

    ADS  MATH  Google Scholar 

  52. Banaszek, K., Wódkiewicz, K.: Nonlocality of the Einstein–Podolsky–Rosen state in the Wigner representation. Phys. Rev. A 58, 4345 (1998)

    ADS  Google Scholar 

  53. DellAnno, F., DeSiena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333 (2010)

    ADS  Google Scholar 

  54. Raymond Ooi, C.H., Berrada, K.: Beam splitter entangler for nonlinear bosonic fields. Laser Phys. 22, 1449–1454 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soorat, R., Nitharshini, S., Anil Kumar, M. et al. Nonclassical photon statistics and bipartite entanglement generation of excited coherent states. Quantum Inf Process 19, 297 (2020). https://doi.org/10.1007/s11128-020-02756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02756-9

Keywords

Navigation