Skip to main content
Log in

Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization–time-bin hyperentanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hyperentanglement is a quantum system which simultaneously entangles in several degrees of freedom. It is an important resource in quantum communication field. In practical application of hyperentanglement, the photon transmission loss is a big obstacle. In the paper, we propose an entanglement-assisted noiseless linear amplification (NLA) protocol to protect the two-photon polarization–time-bin hyperentanglement. Our protocol can effectively increase the fidelity of this hyperentanglement, while preserve its polarization and time-bin features. Our NLA protocol can be realized under current experimental condition and further extended to protect the general N-photon polarization–time-bin hyperentanglement in the multi-directional transmission process. This NLA protocol may have important applications in future hyperentanglement-based quantum communication network field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    ADS  MATH  Google Scholar 

  3. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quantum Eng. 1, e3 (2019)

    Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum crytography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Lu, W.Z., Huang, C.H., Hou, K., Shi, L.T., Zhao, H.H., Li, Z.M., Qiu, J.F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17, 109 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  8. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  9. Gao, Z.K., Li, T., Li, Z.H.: Long-distance measurement-device-independent quantum secure direct communication. EPL 125, 40004 (2019)

    ADS  Google Scholar 

  10. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Google Scholar 

  11. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    ADS  Google Scholar 

  12. He, R., Ma, J.G., Wu, J.W.: A quantum secure direct communication protocol using entangled beam pairs. EPL 127, 50006 (2019)

    ADS  Google Scholar 

  13. Qin, H.W., Tang, W.K.S., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17, 152 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  14. He, Y.F., Ma, W.P.: Multiparty quantum secure direct communication immune to collective noise. Quantum Inf. Process. 18, 4 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Wu, J.W., Lin, Z.S., Yin, L.G., Long, G.L.: Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng. 1, e26 (2019)

    Google Scholar 

  16. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025 (2017)

    Google Scholar 

  17. Zhao, L.J., Guo, Y.M., Li-Jost, X.Q., Fei, S.M.: Quantum nonlocality can be distributed via separable states. Sci. China Phys. Mech. Astron. 61, 070321 (2018)

    ADS  Google Scholar 

  18. Wang, L.Q., Zhu, S.X., Sun, Z.H.: Entanglement-assisted quantum MDS codes from cyclic codes. Quantum Inf. Process. 19, 65 (2020)

    ADS  MathSciNet  Google Scholar 

  19. Wang, J.L., Li, R.H., Lv, J.J., Guo, G.M., Liu, Y.: Entanglement-assisted quantum error correction codes with length \(n = q(2)+1\). Quantum Inf. Process. 18, 292 (2019)

    ADS  MathSciNet  Google Scholar 

  20. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    ADS  Google Scholar 

  21. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    ADS  Google Scholar 

  22. Hu, X.M., Guo, Y., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4, eaat9304 (2018)

    ADS  Google Scholar 

  23. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    ADS  Google Scholar 

  24. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 090312 (2018)

    Google Scholar 

  25. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    ADS  Google Scholar 

  26. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2003)

    Google Scholar 

  27. Barbieri, M., Vallone, G., Mataloni, P.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    ADS  Google Scholar 

  28. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    ADS  Google Scholar 

  29. Liu, K., Guo, J., Cai, C.X., Guo, S.F., Gao, J.R.: Experimental generation of continuous-variable hyperentanglement in an optical parametric oscillator. Phys. Rev. Lett. 113, 170501 (2014)

    ADS  Google Scholar 

  30. Yoo, J., Choi, Y., Cho, Y.W., Han, S.W., Lee, S.Y., Moon, S., Oh, K., Kim, Y.S.: Experimental preparation and characterization of four-dimensional quantum states using polarization and time-bin modes of a single photon. Opt. Commun. 30, 419 (2018)

    Google Scholar 

  31. Vergyris, P., Mazeas, F., Gouzien, E., Labonte, L., Alibart, O., Tanzilli, S., Kaiser, F.: Fibre based hyperentanglement generation for dense wavelength division multiplexing. Quantum Sci. Technol. 4, 045007 (2019)

    ADS  Google Scholar 

  32. Ralph, T.C., Lund, A.P.: Quantum communication measurement and computing. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference, pp. 155–160. AIP, New York (2009)

  33. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    ADS  Google Scholar 

  34. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304 (2011)

    ADS  Google Scholar 

  35. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Effcient heralding of photonic qubits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    ADS  Google Scholar 

  36. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photon. 4, 316 (2010)

    Google Scholar 

  37. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    ADS  Google Scholar 

  38. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplication. Phys. Rev. A 86, 034302 (2012)

    ADS  Google Scholar 

  39. Meyer-Scott, E., Bula, M., Bartkiewicz, K., C̆rnoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

    ADS  Google Scholar 

  40. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23–28 (2013)

    Google Scholar 

  41. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    ADS  Google Scholar 

  42. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    ADS  Google Scholar 

  43. Bruno, N., Pini, V., Martin, A., et al.: Heralded amplification of photonic qubits. Opt. Express 24, 125–133 (2016)

    ADS  Google Scholar 

  44. Monteiro, F., Verbanis, E., Vivoli Caprara, V., Martin, A., Gisin, N., Zbinden, H., Thew, R.T.: Heralded amplification of path entangled quantum states. Quantum Sci. Technol. 2, 024008 (2017)

    ADS  Google Scholar 

  45. Zhou, L., Chen, L.Q., Zhong, W., Sheng, Y.B.: Recyclable amplification for single-photon entanglement from photon loss and decoherence. Laser Phys. Lett. 15, 015201 (2018)

    ADS  Google Scholar 

  46. Wang, D.D., Jin, Y.Y., Qin, S.X., Zu, H., Zhou, L., Zhong, W., Sheng, Y.B.: Heralded noiseless amplification for single-photon entangled state with polarization feature. Quantum Inf. Process. 17, 56 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Chen, L.Q., Sheng, Y.B., Zhou, L.: Noiseless linear amplification for the single-photon entanglement of arbitrary polarization-time-bin qudit. Chin. Phys. B 28, 010302 (2019)

    ADS  Google Scholar 

  48. Yang, G., Zhang, Y.S., Yang, Z.R., Zhou, L., Sheng, Y.B.: Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state. Quantum Inf. Process. 18, 317 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Tsujimoto, Y., You, C., Wakui, K. et al.: Heralded amplification of nonlocality via entanglement swapping for long-distance device-independent quantum key distribution (2019). arXiv: 1904.06179v1

  50. Winne, M., Hosseinideha, N., Ralph, T.C.: Generalised quantum scissors for noiseless linear amplification (2020). arXiv: 2002.12566v1

  51. Halenková, E., C̆ernoch, A., Lemr, K., Soubusta, J., Drusová, S.: Experimental implementation of the multifunctional compact two-photon state analyzer. Appl. Opt. 51, 474 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11974189 and the Postdoctoral Research Foundation of China under Grant No. 2018M642293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YP., Zhang, J., Xu, BW. et al. Entanglement-assisted noiseless linear amplification for arbitrary two-photon polarization–time-bin hyperentanglement. Quantum Inf Process 19, 261 (2020). https://doi.org/10.1007/s11128-020-02762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02762-x

Keywords

Navigation