Skip to main content
Log in

Quantum multiparty cryptosystems based on a homomorphic random basis encryption

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum information processing protocols have great advantages over their classical counterparts, especially on cryptography. Homomorphic encryption (HE) schemes enable processing encrypted data without decrypting them. In this paper, we study a quantum version of the HE scheme (iacr-ePrint/2019/1023) and improve it with flexible parties. Furthermore, we propose a threshold quantum secret scheme since multiparty cryptosystem is more practical due to its flexibility. These two schemes only require sequential decryption of quantum states. As a result, both schemes are information theoretically secure, perfectly correct and support homomorphism in a fully compact and non-interactive way. Finally, they are tested and verified on the IBM Q Experience platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247 (2000)

    Article  ADS  MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1(3), 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Systems and Signal Processing, pp. 175–179, New York, USA (1984)

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peresand, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  7. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, pp. 643–652. ACM (2002)

  10. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  11. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  12. Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks-deterministic quantum operation sharing schemes with bell states. Scie. China Phys. Mech. Astron. 59(6), 660302 (2016)

    Article  Google Scholar 

  13. Zhang, K., Zhang, X., Jia, H., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 81 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Zhang, C., Razavi, M., Sun, Z., Situ, H.: Improvements on secure multi-party quantum summation based on quantum fourier transform. Quantum Inf. Process. 18(11), 336 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, C., Razavi, M., Sun, Z., Huang, Q., Situ, H.: Multi-party quantum summation based on quantum teleportation. Entropy 21(7), 719 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme. Stanford University, Stanford (2009)

    Google Scholar 

  17. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 79 (2018)

    Article  Google Scholar 

  18. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption: an engineering perspective. ACM Comput. Surv. (CSUR) 50(6), 83 (2018)

    Article  Google Scholar 

  19. Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)

    Article  ADS  Google Scholar 

  20. Liang, M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12(12), 3675–3687 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Tan, S.-H., Kettlewell, J.A., Ouyang, Y., Chen, L., Fitzsimons, J.F.: A quantum approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016)

    Article  ADS  Google Scholar 

  22. Ouyang, Y., Tan, S.-H., Fitzsimons, J.F.: Quantum homomorphic encryption from quantum codes. Phys. Rev. A 98(4), 042334 (2018)

    Article  ADS  Google Scholar 

  23. Tan, S.-H., Ouyang, Y., Rohde, P.P.: Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states. Phys. Rev. A 97(4), 042308 (2018)

    Article  ADS  Google Scholar 

  24. Ouyang, Y., Tan, S.-H., Fitzsimons, J., Rohde, P.P.: Homomorphic encryption of linear optics quantum computation on almost arbitrary states of light with asymptotically perfect security. Phys. Rev. Res. 2(1), 013332 (2020)

    Article  Google Scholar 

  25. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low t-gate complexity. In: Annual Cryptology Conference, pp. 609–629. Springer, Berlin (2015)

  26. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Annual International Cryptology Conference, pp. 3–32. Springer, Berlin (2016)

  27. Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic encryption with verification. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 438–467. Springer, Berlin (2017)

  28. Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 332–338. IEEE (2018)

  29. Brakerski, Z.: Quantum FHE (almost) as secure as classical. In: Annual International Cryptology Conference, pp. 67–95. Springer, Berlin (2018)

  30. Yu, L., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90(5), 050303 (2014)

    Article  ADS  Google Scholar 

  31. Aharonov, D., Brakerski, Z., Chung, K.-M., Green, A., Lai, C.-Y., Sattath, O.: On quantum advantage in information theoretic single-server PIR. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 219–246. Springer, Berlin (2019)

  32. Bitan, D., Dolev, S.: Randomly rotate qubits compute and reverse—it-secure non-interactive fully-compact homomorphic quantum computations over classical data using random bases. Cryptology ePrint Archive, Report 2019/1023 (2019). https://eprint.iacr.org/2019/1023

  33. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  34. Ouyang, Y., Tan, S.-H., Zhao, L., Fitzsimons, J.F.: Computing on quantum shared secrets. Phys. Rev. A 96(5), 052333 (2017)

    Article  ADS  Google Scholar 

  35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Changbin, L., Miao, F., Hou, J., Huang, W., Xiong, Y.: A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security. Quantum Inf. Process. 19(1), 24 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ambainis, A., Mosca, M., Tapp, A., De Wolf, R.: Private quantum channels. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 547–553. IEEE (2000)

  38. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Founda. Sec. Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for helpful suggestions. This work is supported by Key Research and Development Program of China 2018YFB0803400, National Natural Science Foundation of China 61572454, 61572453, 61520106007 and Anhui Initiative in Quantum Information Technologies AHY150100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyou Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Miao, F., Hou, J. et al. Quantum multiparty cryptosystems based on a homomorphic random basis encryption. Quantum Inf Process 19, 293 (2020). https://doi.org/10.1007/s11128-020-02788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02788-1

Keywords

Navigation