Skip to main content
Log in

Quantum entanglement in the background of cosmic string spacetime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We examine the entanglement behaviors for two static atoms coupled to a massless scalar field in the cosmic string spacetime. The entanglement measure is calculated for different cases for two atoms initially prepared in the Werner state. It is found that entanglement behaviors depend on vacuum fluctuation, two-atom distance and nontrivial spacetime topology. When deficit angle parameter \(\nu =1\), the evolution model reduces to that of Minkowski spacetime. When two-atom distance is sufficiently small, entanglement can be preserved from the impact of vacuum fluctuation to some extent. Large deficit angle parameter can accelerate destruction of entanglement and shorten lifetime of entanglement. Entanglement presents slight oscillating behavior as atom–string distance varies. A large atom–string distance can retard the entanglement decay and extend entanglement lifetime as a whole. Our exploration may be useful to sense the cosmic string spacetime topology structure and property in principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  5. Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Steeg, G.V., Menicucci, N.C.: Entangling power of an expanding universe. Phys. Rev. D 79, 044027 (2009)

    Article  ADS  Google Scholar 

  7. Salton, G., et al.: Acceleration-assisted entanglement harvesting and rangefinding. New J. Phys. 17, 035001 (2015)

    Article  ADS  Google Scholar 

  8. Henderson, L.J. et al.: Harvesting entanglement from the black hole vacuum. Class. Quantum Grav. 35 21LT02 (2018)

  9. Ng, K.K., et al.: Unruh-DeWitt detectors and entanglement: The anti-de Sitter space. Phys. Rev. D 98, 125005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Henderson, L.J., et al.: Entangling detectors in anti-de Sitter space. J. High Energ. Phys. 2019, 178 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cong, W., et al.: Entanglement harvesting with moving mirrors. J. High Eng. Phys. 2019, 21 (2019)

    Article  MathSciNet  Google Scholar 

  12. Cong, W. et al.: Effects of horizons on entanglement harvesting. arXiv:2006.01720 (2020)

  13. Velenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Audretsch, J., Economou, A.: Conical bremsstrahlung in a cosmic-string spacetime. Phys. Rev. D 44, 3774 (1991)

    Article  ADS  Google Scholar 

  15. Vilenkin, A.: Cosmic strings as gravitational lenses. Astrophys. J. 282, L51 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gott, J.R.: Gravitational lensing effects of vacuum strings-exact solutions. Astrophys. J. 288, 422 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ford, L.H., Vilenkin, A.: A gravitational analogue of the Aharonov–Bohm effect. J. Phys. A Math. Gen. 14, 2353 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bezerra, V.B.: Gravitational analogs of the Aharonov–Bohm effect. J. Math. Phys. 30, 2895 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  19. Cai, H., Yu, H., Zhou, W.: Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime. Phys. Rev. D 92, 084062 (2015)

    Article  ADS  Google Scholar 

  20. Zhou, W., Yu, H.: Spontaneous excitation of a uniformly accelerated atom in the cosmic string spacetime. Phys. Rev. D 93, 084028 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cai, H., Ren, Z.: Radiative processes of two entangled atoms in cosmic string spacetime. Class. Quantum Grav. 35, 025016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bakke, K., Ribeiro, L.R., Furtado, C., Nascimento, J.R.: Landau quantization for a neutral particle in the presence of topological defects. Phys. Rev. D 79, 024008 (2009)

    Article  ADS  Google Scholar 

  23. Medeiros, E.R.F., Bezerra de Mello, E.R.: Relativistic quantum dynamics of a charged particle in cosmic string spacetime in the presence of magnetic field and scalar potential. Eur. Phys. J. C 72, 2051 (2012)

    Article  ADS  Google Scholar 

  24. Bakke, K., Nascimento, J.R., Furtado, C.: Geometric phase for a neutral particle in the presence of a topological defect. Phys. Rev. D 78, 064012 (2008)

    Article  ADS  Google Scholar 

  25. Cai, H., Ren, Z.: Geometric phase for a static two-level atom in cosmic string spacetime. Class. Quantum Grav. 35, 105014 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bezerra de Mello, E.R., Saharian, A.A., Kh Grigoryan, A.: Casimir effect for parallel metallic plates in cosmic string spacetime. J. Phys. A Math. Theor. 45, 374011 (2012)

    Article  MathSciNet  Google Scholar 

  27. Saharian, A.A., Kotanjyan, A.S.: Casimir-Polder potential for a metallic cylinder in cosmic string spacetime. Phys. Lett. B 713, 133 (2012)

    Article  ADS  Google Scholar 

  28. Bezerra de Mello, E.R., Bezerra, V.B., Mota, H.F., Saharian, A.A.: Casimir-Polder interaction between an atom and a conducting wall in cosmic string spacetime. Phys. Rev. D 86, 065023 (2012)

    Article  ADS  Google Scholar 

  29. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  32. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  33. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  34. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic, Orlando (1980)

    MATH  Google Scholar 

  35. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  36. Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61802061, 61871205) and the Innovation Project of Department of Education of Guangdong Province of China (2017KTSCX180, 2019KTSCX188), Doctoral Program of Guangdong Natural Science Foundation (2016A030310001) and the Guangdong philosophy and social science planning project (GD15XGL55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., He, Z. Quantum entanglement in the background of cosmic string spacetime. Quantum Inf Process 19, 298 (2020). https://doi.org/10.1007/s11128-020-02796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02796-1

Keywords

Navigation