Skip to main content
Log in

Searching for optimal quantum secret sharing scheme based on local distinguishability

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The (k, n)-threshold quantum secret sharing scheme is an important and difficult field in quantum information processing and quantum cryptography. In this paper, the (k, n)-threshold quantum secret sharing scheme based on local operations and classical communication (LOCC-QSS) is investigated. Firstly, in order to effectively study the LOCC-QSS scheme, digital and graphical representations of judgement space are introduced creatively. These representations are simple and convenient. Secondly, an algorithm is designed to search optional states for any given k and n. For optional states, the unambiguous probability equals 0 when x participants cooperate (x < k). Thirdly, a method is proposed to decrease the guessing probability. Some schemes which are more secure than existing ones can be obtained further. Last but not least, the conditions of optimal LOCC-QSS schemes are given for the first time. Our research will be helpful for the development of LOCC-QSS scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G. R.: Safeguarding cryptographic keys. In: 1979 International Workshop on Managing Requirements Knowledge (MARK), pp. 313–317. IEEE, Montvale (1979)

  3. Bennett, C. Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE, Bangalore (1984)

  4. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  6. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE T. Inform. Theory 58, 6659–6666 (2012)

    Article  MathSciNet  Google Scholar 

  8. Pilaram, H., Eghlidos, T.: An efficient lattice based multi-stage secret sharing scheme. IEEE Trans. Depend Secure 14, 2–8 (2015)

    Google Scholar 

  9. Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  10. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  13. Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z., Yang, T., Pan, J.W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005)

    Article  ADS  Google Scholar 

  14. Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, L.L., Ma, X.F., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)

    Article  ADS  Google Scholar 

  15. Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)

    Article  ADS  Google Scholar 

  16. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  17. Cao, H., Ma, W.P.: (t, n) threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J. 9, 1–7 (2017)

    Google Scholar 

  18. Lu, C., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17, 310 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep.-UK 7, 6366 (2017)

  20. Qin, H., Dai, Y.: An efficient (t, n) threshold quantum secret sharing without entanglement. Mod. Phys. Lett. B 30, 1650138 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lai, H., Zhang, J., Luo, M. X., Pan, L., Pieprzyk, J., Xiao, F., Orgun, M. A.: Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman-Fibonacci-tree coding. Sci. Rep.-UK 6, 31350 (2016)

  22. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  23. Yang, Y.H., Gao, F., Wu, X., Qin, S.J., Zuo, H.J., Wen, Q.Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep.-UK 5, 16967 (2015)

  24. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  25. Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, C.J., Li, Z.H., Bai, C.M., Si, M.M.: Quantum-Secret-Sharing Scheme based on local distinguishability of orthogonal Seven-Qudit entangled states. Int. J. Theor. Phys. 57, 428–442 (2018)

    Article  MathSciNet  Google Scholar 

  27. Bae, J., Kwek, L.C.: Quantum state discrimination and its applications. J. Phys. A-Math. Theor. 48, 083001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hardy, G.H., Ramanujan, S.: Asymptotic formulaæ in combinatory analysis. P. Lond. Math. Soc. 2, 75–115 (1918)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFB0802703), NSFC (Grant Nos. 61671087, 61272514, 61170272, 61003287, U1836205), the Fok Ying Tong Education Foundation (Grant No. 131067), the Major Scientific and Technological Special Project of Guizhou Province (Grant No. 20183001), the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant Nos. 2018BDKFJJ016, 2019BDKFJJ014), the Foundation of State Key Laboratory of Public Big Data (Grant No. 2018BDKFJJ018) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2019XD-A02, 2020RC38) and sponsored by CCF-Tencent Open Fund WeBank Special Funding (CCF-WebankRAGR20180104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The pseudo-code of our searching algorithm

Appendix: The pseudo-code of our searching algorithm

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Z., Xu, G., Chen, XB. et al. Searching for optimal quantum secret sharing scheme based on local distinguishability. Quantum Inf Process 19, 368 (2020). https://doi.org/10.1007/s11128-020-02809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02809-z

Keywords

Navigation