Skip to main content
Log in

Quantum steering and quantum coherence in XY model with Dzyaloshinskii–Moriya interaction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the quantum steering and quantum coherence in the generalized XY model with Dzyaloshinskii–Moriya interaction. We find that both the two measurements (steerable weight and robustness of coherence, which are applied to qualify quantum steering and quantum coherence, respectively) can be applied to describe the quantum phase transition in this model. As the strength of Dzyaloshinskii–Moriya interaction increases, the phase transition characterized from the derivative of robustness of coherence becomes less significant. This is dramatically different from steerable weight. As the strength of Dzyaloshinskii–Moriya interaction increases, the identification of quantum phase transition from steerable weight becomes more accurate. In addition, numerical investigations show that a sufficiently large number of random measurements in each assemblage is important in the calculation of steerable weight and the identification of quantum phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell, M., Gao, S.: Quantum Nonlocality and Reality. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  2. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    ADS  MATH  Google Scholar 

  3. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    ADS  MATH  Google Scholar 

  4. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    ADS  Google Scholar 

  5. Kogias, I., Lee, A.R., Ragy, S., Adesso, G.: Quantification of Gaussian quantum steering. Phys. Rev. Lett. 114, 060403 (2015)

    ADS  Google Scholar 

  6. Zhu, H.-J., Hayashi, M., Chen, L.: Universal steering criteria. Phys. Rev. Lett. 116, 070403 (2016)

    ADS  Google Scholar 

  7. Jones, J.S., Wiseman, H.M., Doherty, A.C.: Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Kocsis, S., Hall, M.J.W., Bennet, A.J., Saunders, D.J., Pryde, G.J.: Experimental measurement-device-independent verification of quantum steering. Nat. Commun. 6, 5886 (2015)

    ADS  Google Scholar 

  9. Zhang, C., Cheng, S.-M., Li, L., Liang, Q.-Y., Liu, B.-H., Huang, Y.F., Li, C.-F., Guo, G.-C., Hall, M.J.W., Wiseman, H.M., Pryde, G.J.: Experimental validation of quantum steering ellipsoids and tests of volume monogamy relations. Phys. Rev. Lett. 122, 070402 (2019)

    ADS  Google Scholar 

  10. Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A., Nori, F.: Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A 93, 062345 (2016)

    ADS  Google Scholar 

  11. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  12. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)

    ADS  Google Scholar 

  13. He, Q.-Y., Rosales-Zárate, L., Adesso, G., Reid, M.D.: Secure continuous variable teleportation and Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 115, 180502 (2015)

    ADS  Google Scholar 

  14. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    ADS  MathSciNet  Google Scholar 

  15. Reid, M.D.: Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein–Podolsky–Rosen steering inequalities. Phys. Rev. A 88, 062338 (2013)

    ADS  Google Scholar 

  16. Paul, T.: Quantum computation and quantum information. Math. Struct Comput. Sci. 17, 1115 (2007)

    MathSciNet  Google Scholar 

  17. Liu, Z.-D., Sun, Y.-N., Cheng, Z.-D., Xu, X.-Y., Zhou, Z.-Q., Chen, G., Li, C.-F., Guo, G.-C.: Experimental test of single-system steering and application to quantum communication. Phys. Rev. A 95, 022341 (2017)

    ADS  Google Scholar 

  18. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    ADS  Google Scholar 

  19. Wiseman, H.M., Jones, J.S., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    ADS  Google Scholar 

  21. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    ADS  Google Scholar 

  22. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

    ADS  Google Scholar 

  23. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Prog. Phys. 80, 024001 (2017)

    ADS  MathSciNet  Google Scholar 

  25. Sándor, N., Tamás, V.: EPR steering inequalities with communication assistance. Sci. Rep. 6, 21634 (2016)

    Google Scholar 

  26. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  27. Oreg, Y., Goldhaber-Gordon, D.: Two-channel Kondo effect in a modified single electron transistor. Phys. Rev. Lett. 90, 136602 (2003)

    ADS  Google Scholar 

  28. Sondhi, S.I., Girvin, S.M., Carini, J.P., Shahar, D.: Continuous phase transitions. Rev. Mod. Phys. 69, 315–333 (1997)

    ADS  Google Scholar 

  29. van der Zant, H.S.J., Fritschy, F.C., Elion, W.E., Geerligs, L.J., Mooij, J.E.: Field-induced superconductor-to-insulator transition in Josephson junction arrays. Phys. Rev. Lett. 69, 2971–2974 (1992)

    ADS  Google Scholar 

  30. Lipkin, H.J., Meshkov, N., Glick, A.J.: Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl. Phys. 62, 188–198 (1965)

    MathSciNet  Google Scholar 

  31. Pan, F., Draayer, J.P.: Analytical solutions for the LMG model. Phys. Lett. B 451, 1–10 (1999)

    ADS  Google Scholar 

  32. Latorre, J.I., Orús, R., Rico, E., Vidal, J.: Entanglement entropy in the Lipkin–Meshkov–Glick model. Phys. Rev. A 71, 064101 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. (N.Y.) 321, 2–111 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Mandal, S., Surendran, N.: Exactly solvable Kitaev model in three dimensions. Phys. Rev. B 79, 024426 (2009)

    ADS  Google Scholar 

  35. Yao, H., Qi, X.-L.: Entanglement entropy and entanglement spectrum of the Kitaev model. Phys. Rev. Lett. 105, 080501 (2010)

    ADS  Google Scholar 

  36. Shi, X.-F., Yu, Y., You, J.Q., Nori, F.: Topological quantum phase transition in the extended Kitaev spin model. Phys. Rev. B 79, 134431 (2009)

    ADS  Google Scholar 

  37. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    ADS  MATH  Google Scholar 

  38. Wang, Y.-K., Hioe, F.T.: Phase transition in the Dicke model of superradiance. Phys. Rev. A 7, 831–836 (1973)

    ADS  Google Scholar 

  39. Bhaseen, M.J., Mayoh, J., Simons, B.D., Keeling, J.: Dynamics of nonequilibrium Dicke models. Phys. Rev. A 85, 013817 (2012)

    ADS  Google Scholar 

  40. Gu, S.-J., Deng, S.-S., Li, Y.-Q., Lin, H.-Q.: Entanglement and quantum phase transition in the extended Hubbard model. Phys. Rev. Lett. 93, 086402 (2004)

    ADS  Google Scholar 

  41. Gu, S.-J., Lin, H.-Q., Li, Y.-Q.: Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A 68, 042330 (2003)

    ADS  Google Scholar 

  42. Gu, S.-J., Tian, G.-S., Lin, H.-Q.: Local entanglement and quantum phase transition in spin models. New J. Phys 8, 61 (2006)

    ADS  MathSciNet  Google Scholar 

  43. Deng, S.-S., Gu, S.-J., Lin, H.-Q.: Block-block entanglement and quantum phase transitions in the one-dimensional extended Hubbard model. Phys. Rev. B 74, 045103 (2006)

    ADS  Google Scholar 

  44. Su, S.-Q., Song, J.-L., Gu, S.-J.: Local entanglement and quantum phase transition in a one-dimensional transverse field Ising model. Phys. Rev. A 74, 032308 (2006)

    ADS  Google Scholar 

  45. Liu, B.-Q., Shao, B., Li, J.-G., Zou, J., Wu, L.-A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii–Moriya interaction. Phys. Rev. A 83, 052112 (2011)

    ADS  Google Scholar 

  46. Zhu, Y.-Y., Zhang, Y.: Quantum discord in the three-spin XXZ chain with Dzyaloshinskii–Moriya interaction. Sci. China Phys. Mech. 55, 2081–2087 (2012)

    Google Scholar 

  47. Tian, L.-J., Yan, Y.-Y., Qin, L.-G.: Quantum correlation in three-qubit Heisenberg model with Dzyaloshinskii–Moriya interaction. Commun. Theor. Phys. 58, 39–46 (2012)

    ADS  MATH  Google Scholar 

  48. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    ADS  MathSciNet  Google Scholar 

  49. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    ADS  Google Scholar 

  50. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)

    ADS  Google Scholar 

  51. Batle, J., Casas, M.: Nonlocality and entanglement in the \({XY}\) model. Phys. Rev. A 82, 062101 (2010)

    ADS  MathSciNet  Google Scholar 

  52. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    ADS  MathSciNet  Google Scholar 

  53. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    ADS  Google Scholar 

  54. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. (N.Y.) 16, 407–466 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. I. Phys. Rev. A 2, 1075–1092 (1970)

    ADS  Google Scholar 

  56. Barouch, E., McCoy, B.M.: Statistical mechanics of the \(XY\) model. II. Spin-correlation functions. Phys. Rev. A 3, 786–804 (1971)

    ADS  Google Scholar 

  57. Peres, A.: Quantum Theory: Concepts and Methods. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We appreciate support from the NSFC under Grants Nos. 11504106, 11805065 and the Fundamental Research Funds for the Central Universities under Grant No. 2018MS049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CX., Chen, L., Han, RS. et al. Quantum steering and quantum coherence in XY model with Dzyaloshinskii–Moriya interaction. Quantum Inf Process 19, 330 (2020). https://doi.org/10.1007/s11128-020-02824-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02824-0

Keywords

Navigation