Skip to main content
Log in

Comprehensive high-speed reconciliation for continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Reconciliation is currently the bottleneck of continuous-variable quantum key distribution systems for its great influence on the key rate and the distance of systems. In this paper, we address the increase in key rates by accelerating the speed of reconciliation algorithms based on the protocol of sliced error correction on a heterogeneous computing structure (a GPGPU card (general purpose graphics processing units will be abbreviated as GPU in this paper) and a general CPU) in the framework of Open Computing Language (OpenCL) (OpenCL is a programming framework based on C language). A block length of its component codes of low-density parity-check (LDPC) codes up to 2\(^{17}\) bits is employed in order to achieve a higher reconciliation efficiency. To meet the requirements of the OpenCL specifications, we designed a data structure, namely static cross bi-directional circular linked list, to store a super large sparse check matrix of the LDPC codes. Such a configuration ensures the practicability of our system, i.e. a better trade-off between the speed and net key rates of the reconciliation. The speed of the proposed reconciliation scheme reaches about 70.1 Mb/s with 512 codewords decoding in parallel, approximately 3600 times faster than that with the platform with only a CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Signal-to-Noise Ratio, defined as the ratio of Alice’s modulation variance to the noise variance.

  2. Here we use two levels, \(j=3,4\).

References

  1. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180504 (2009)

    Article  ADS  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems and Signal Processing (1984)

  4. Gyongyosi, L., Bacsardi, L., Imre, S.: A survey on quantum key distribution. Infocommun J 11(2), 14–21 (2019)

    Google Scholar 

  5. Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61(1), 010303 (1999)

    Article  MathSciNet  Google Scholar 

  6. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  7. Gyongyosi, L., Imre, S.: Low-dimensional reconciliation for continuous-variable quantum key distribution. Appl Sci 8(1), 87 (2018)

    Article  Google Scholar 

  8. Lin, D., Huang, D., Huang, P., Peng, J., Zeng, G.: High performance reconciliation for continuous-variable quantum key distribution with ldpc code. Int. J. Quantum Inf. 13(02), 1550010 (2015)

    Article  MathSciNet  Google Scholar 

  9. Van Assche, G., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed gaussian key. IEEE Trans. Inf. Theory 50(2), 394–400 (2004)

    Article  MathSciNet  Google Scholar 

  10. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., et al.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    Article  ADS  Google Scholar 

  11. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)

    Article  ADS  Google Scholar 

  12. Heid, M., Lütkenhaus, N.: Security of coherent-state quantum cryptography in the presence of gaussian noise. Phys. Rev. A 76(2), 022313 (2007)

    Article  ADS  Google Scholar 

  13. García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  14. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77(4), 042325 (2008)

    Article  ADS  Google Scholar 

  15. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a gaussian modulation. Phys. Rev. A 84(6), 062317 (2011)

    Article  ADS  Google Scholar 

  16. Yunyan, W., Dabo, G., Yanhuang, Z., Xiaokai, W, Zhuanling, H.: Algorithm of multidimensional reconciliation for continuous-variable quantum key distribution. Guangxue Xuebao/Acta Optica Sinica 34(8) (2014)

  17. Gyongyosi, L., Imre, S.: Secret key rate proof of multicarrier continuous-variable quantum key distribution. Int. J. Commun. Syst. 32(4), e3865 (2019)

    Article  Google Scholar 

  18. Gyongyosi, L., Imre, S.: Multiple access multicarrier continuous-variable quantum key distribution. Chaos Solitons Fract 114, 491–505 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  20. Lin, Y., Niu, W.: High throughput LDPC decoder on GPU. IEEE Commun. Lett. 18(2), 344–347 (2014)

    Article  Google Scholar 

  21. Maier, A.J., Cockburn, B.: Optimization of low-density parity check decoder performance for opencl designs synthesized to fpgas. Journal of Parallel and Distributed Computing 107, 04 (2017)

    Article  Google Scholar 

  22. Bloch, M., Thangaraj, A., McLaughlin, S.W., Merolla, J.: LDPC-based secret key agreement over the Gaussian wiretap channel. In: 2006 IEEE International Symposium on Information Theory, pp. 1179–1183 (2006)

  23. Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19(4), 471–480 (1973)

    Article  MathSciNet  Google Scholar 

  24. Grosshans, Frédéric, Cerf, Nicolas J., Wenger, Jérôme., Tualle-Brouri, Rosa., Grangier, Ph.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. arXiv preprint quant-ph/0306141, (2003)

  25. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  26. MacKay, D.J.C., Mac Kay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  27. Wachsmann, U., Fischer, R.F.H., Huber, J.B.: Multilevel codes: theoretical concepts and practical design rules. IEEE Trans. Inf. Theory 45(5), 1361–1391 (1999)

    Article  MathSciNet  Google Scholar 

  28. Guo, D., Zhang, Y., Wang, Y.: Performance optimization for the reconciliation of gaussian quantum key distribution. Guangxue Xuebao/Acta Opt. Sin. 34, 01 (2014)

    Google Scholar 

  29. Scarpino, M.: Opencl in Action. Manning Publications, Westampton (2011)

    Google Scholar 

  30. MacKay, D.J.C., Neal, R.M.: Near shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645 (1996)

    Article  ADS  Google Scholar 

  31. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45(2), 399–431 (1999)

    Article  MathSciNet  Google Scholar 

  32. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory 47(2), 619–637 (2001)

    Article  MathSciNet  Google Scholar 

  33. Lodewyck, J.: Quantum Key Distribution Device with Coherent States at Telecom Wavelength. Université Paris Sud - Paris XI, Theses (2006)

  34. Yang, S., Lu, Z., Li, Y.: High-speed post-processing in continuous-variable quantum key distribution based on fpga implementation. J. Lightw. Technol. 38(15), 3935–3941 (2020)

    Article  ADS  Google Scholar 

  35. Zhang, G., Haw, J.Y., Cai, H., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Xu, F., et al.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13(12), 839–842 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the supporting of the Natural Science Foundation of Shanxi province in China (Grants No. 201801D121118) and helpful discussions and revisions by Dr. Jinze Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabo Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., He, C., Guo, T. et al. Comprehensive high-speed reconciliation for continuous-variable quantum key distribution. Quantum Inf Process 19, 320 (2020). https://doi.org/10.1007/s11128-020-02832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02832-0

Keywords

Navigation