Skip to main content
Log in

Proof-of-principle demonstration of decoy-state quantum key distribution with biased basis choices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Decoy-state method has been widely employed in the quantum key distribution (QKD), since it can not only solve photon-number-splitting attacks but also substantially improve the QKD performance. In conventional three-intensity decoy-state proposal, one not only needs to randomly modulate light sources to different intensities, but also has to prepare them into different bases, which may cost a lot of random numbers in practical applications. Here, we propose a simple decoy-state scheme with biased basis choices where the decoy pulses are only prepared in X basis. Through this way, it can save cost of random numbers and further simplify the electronic control system. Moreover, we carry out corresponding proof-of-principle demonstration. By incorporating with lower-loss asymmetric Mach–Zehnder interferometers and superconducting single-photon detectors, we can obtain a secret key rate of 1.65 kbps at 201 km and 19.5 bps at 280 km coiled optical fibers, respectively, showing very promising applications in future quantum communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekert, A.-K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  5. Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

  6. Laing, A., Scarani, V., Rarity, J.-G., et al.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)

    Article  ADS  Google Scholar 

  7. Lo, H.-K., Marcos, C., Bing, Q.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Lucamarini, M., Dynesand, Z.-L., Shields, A.-J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  9. Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014)

    Article  ADS  Google Scholar 

  10. Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)

    Article  ADS  Google Scholar 

  11. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387 (2011)

    Article  ADS  Google Scholar 

  12. Wang, S., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739 (2014)

    Article  ADS  Google Scholar 

  13. Stucki, D., et al.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. Opt. Lett. 13, 123001 (2011)

    Google Scholar 

  14. Dynes, J.-F., et al.: Stability of high bit rate quantum key distribution on installed fiber. Opt. Express 20, 16339 (2012)

    Article  ADS  Google Scholar 

  15. Dixon, A.-R., et al.: High speed prototype quantum key distribution system and long term field trial. Opt. Express 23, 7583 (2015)

    Article  ADS  Google Scholar 

  16. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.-C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  17. Lutkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)

    Article  ADS  Google Scholar 

  18. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum crytography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  19. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  20. Frohlich, B., et al.: Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163 (2017)

    Article  ADS  Google Scholar 

  21. Boaron, A., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    Article  ADS  Google Scholar 

  22. Wang, Q., et al.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  23. Zhang, C.-H., et al.: Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss. Opt. Express 26, 25921 (2008)

    Article  ADS  Google Scholar 

  24. Zhou, Y.-H., Yu, Z.-.W., Wang, X.-B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)

  25. Fung, C.-H.F., Ma, X.-F., Chau, H.F.: Practical issues in quantum-key-distribution postprocessing. Phys. Rev. A 81, 012318 (2010)

    Article  ADS  Google Scholar 

  26. Zhang, C.-H., Luo, S.-L., Guo, G.-C., Wang, Q.: Biased three-intensity decoy-state scheme on the measurement-device-independent quantum key distribution using heralded single-photon sources. Opt. Express 26, 4219 (2018)

    Article  ADS  Google Scholar 

  27. Wang, X.-B., Yang, L., Peng, C.-Z., Pan, J.-W.: Decoy-state quantum key distribution with both source errors and statistical fluctuations. New J. Phys. 11, 075006 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate Hengtong Optic-Electric Co., Ltd., for providing lower-loss fibers. We gratefully acknowledge the financial support from the National Key R&D Program of China (Nos. 2018YFA0306400, 2017YFA0304100), the National Natural Science Foundation of China (Nos. 11774180, 61590932), the Leading-edge technology Program of Jiangsu Natural Science Foundation (BK20192001), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will give the derivation process of Eqs. (1) and (2).

For the WCS, the probability of finding an i-photon state with intensity \(\xi \)\((\xi \in \{ \mu , \nu \})\) is given by: \(P_{\xi }(i) = \frac{\xi ^{i}}{i!}e^{-\xi }\). Then, we have

$$\begin{aligned} \frac{P_{\mu }(i)}{P_{\nu }(i)} -\frac{P_{\mu }(i-1)}{P_{\nu }(i-1)} =&\frac{\frac{\mu ^i}{i!} e^{-\mu }}{\frac{\nu ^i}{i!} e^{-\nu }} - \frac{\frac{\mu ^{i-1}}{(i-1)!} e^{-\mu }}{\frac{\nu ^{i-1}}{(i-1)!} e^{-\nu }}\nonumber \\ =&\left( \frac{\mu }{\nu }\right) ^{i-1}e^{-(\mu -\nu )}\left( \frac{\mu }{\nu }-1\right) . \end{aligned}$$
(A1)

For any \(i \ge 2\), when \(\mu>\nu >0\), \(\frac{\mu }{\nu }>1\), therefore, the following inequalities hold

$$\begin{aligned} \dfrac{P_{\mu }(i)}{P_{\nu }(i)} \ge \dfrac{P_{\mu }(2)}{P_{\nu }(2)} \ge \dfrac{P_{\mu }(1)}{P_{\nu }(1)}. \end{aligned}$$
(A2)

The Proof for Eq. (1) of the main text is done.

The gains of signal and decoy states can be written as:

$$\begin{aligned} Q_{\mu }^{X}= & {} \sum _{i=0}^\infty Y_{i}^{X}P_{\mu }(i) = P_{\mu }(0)Y_{0}+ P_{\mu }(1)Y_{1}^{X}+ \sum _{i=2}^\infty P_{\mu }(i)Y_{i}^{X}, \end{aligned}$$
(A3)
$$\begin{aligned} Q_{\nu }^{X}= & {} \sum _{i=0}^\infty Y_{i}^{X}P_{\nu }(i) = P_{\nu }(0)Y_{0}+ P_{\nu }(1)Y_{1}^{X}+ \sum _{i=2}^\infty P_{\nu }(i)Y_{i}^{X}. \end{aligned}$$
(A4)

With Eqs. (A3) and (A4), it is easy to get

$$\begin{aligned} Q_{\nu }^{X}P_{\mu }(2)-Q_{\mu }^{X}P_{\nu }(2)&=[P_{\nu }(0)P_{\mu }(2)-P_{\mu }(0)P_{\nu }(2)]Y_{0}+[P_{\nu }(1)P_{\mu }(2)\nonumber \\&\quad -P_{\mu }(1)P_{\nu }(2)]Y_{1}^{X} + \sum _{i=2}^\infty [P_{\nu }(i)P_{\mu }(2)-P_{\mu }(i)P_{\nu }(2)]Y_{i}^{X}. \end{aligned}$$
(A5)

Considering the conditions in Eq. (A2), we can get the following inequality:

$$\begin{aligned}&Q_{\nu }^{X}P_{\mu }(2)-Q_{\mu }^{X}P_{\nu }(2)\le [p_{\nu }(0)p_{\mu }(2)-p_{\mu }(0)p_{\nu }(2)]Y_{0}+[p_{\nu }(1)p_{\mu }(2)\nonumber \\&\quad -p_{\mu }(1)p_{\nu }(2)]Y_{1}^{X}. \end{aligned}$$
(A6)

It is easy to reach

$$\begin{aligned} Y_{1}^{X}\ge \frac{Q_{\nu }^{X}P_{\mu }(2)-Q_{\mu }^{X}P_{\nu }(2)-[P_{\nu }(0)P_{\mu }(2)-P_{\mu }(0)P_{\nu }(2)]Y_{0}}{P_{\nu }(1)P_{\mu }(2)-P_{\mu }(1)P_{\nu }(2)}. \end{aligned}$$
(A7)

The proof for Eq. (2) of the main text is finished.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WZ., Zhu, JR., Ji, L. et al. Proof-of-principle demonstration of decoy-state quantum key distribution with biased basis choices. Quantum Inf Process 19, 341 (2020). https://doi.org/10.1007/s11128-020-02852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02852-w

Keywords

Navigation