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Abstract Considering the presence of measurement noise in the continuous weak
measurement process, the optimization problem of online quantum state tomogra-
phy (QST) with corresponding constraints is formulated. Based on the online alter-
nating direction multiplier method (OADM) and the continuous weak measurement
(CWM), an online QST algorithm (QST-OADM) is designed and derived. Specifi-
cally, the online QST problem is divided into two subproblems about the quantum
state and the measurement noise. The proposed algorithm adopts adaptive learning
rate and reduces the computational complexity to O(d3), which provides a more
efficient mechanism for real-time quantum state tomography. Compared with most
existing algorithms of online QST based on CWM which require time-consuming
iterations in each estimation, the proposed QST-OADM can exactly solve two sub-
problems at each sampling. The merits of the proposed algorithm are demonstrated
in the numerical experiments of online QST for 1, 2, 3, and 4-qubit systems.
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1 Introduction

Quantum state tomography (QST) is to perform d× d (d = 2n) complete measure-
ments for an n-qubit state and solve d2 equations about the unknown state to obtain
the estimated state [1–3]. Traditional quantum state tomography or estimation algo-
rithms are offline, and the entire measurement data set is required to estimate a static
fixed quantum state through multiple iterations [4,5]. The goal of the online QST
is to obtain the dynamic quantum state in real-time and to be used in the quantum
state feedback control system. So the online QST algorithm focuses on processing
only a fraction of the available measurement data in each sampling and calculation.
Such method has been used for online learning [6,7]. The state of an n-qubit system
can usually be described by a density matrix ρ ∈ Cd×d , which satisfies the physical
constraints of positive semidefinite and unit-trace Hermitian [8]. Different with the
commonly used methods of QST based on projective and destructive measurements
[9,10], the continuous weak measurement (CWM) proposed by Silberfarb provides
a new approach to estimate quantum states [11]. Based on CWM, it is possible to
gain the measurement information regarding the state to be estimated without be-
ing disturbed substantially in the measurement process, and the quantum state can
be recovered from computing the ensemble averaging [12]. Due to the non-complete
destructive characteristic of CWM, the online dynamic QST becomes possible.

In the online fixed state estimation of a quantum system based on CWM, peo-
ple usually estimate the static initial quantum state in Heisenberg’s picture, while the
dynamic state can be obtained by evolutionary model [11,12,14,15]. Youssry et al.
[13] proposed an online learning algorithm based on matrix exponentiated gradient
method (MEG). Silberfarb et al. firstly used the maximum likelihood method (ML)
to develope an online ML-estimater [11,12]. The ML-estimater satisfies the physical
constraints by simply setting the negative eigenvalue of the estimated state to zero
and trace normalization. However, these operations cannot guarantee the optimality
of the estimated state. Ralph et al. derived the full Bayesian estimation equations
for frequency tracking and parameter estimation of a single qubit system [14]. More
recently, Yang et al. designed an online processing model of a two-level quantum
system based on constrained least squares estimation (LS) [15,16], which was solved
by the convex optimization toolbox (CVX) in MATLAB [17]. Sajede et al. extended
Yang’s model to an n-qubit stochastic quantum system [18]. However, considering
the real-time application of QST, the currently sampled dynamic quantum state is ex-
pected to be reconstructed instantly. Moreover, the ML [12], Bayesian estimation [14]
and LS solved by the CVX toolbox [15] methods are essentially batch algorithms. Al-
though any batch algorithm can run on the state estimation problem at each sampling
time to create an online estimator, this approach requires a high computational over-
head. In other words, the online estimation process is a double-loop algorithm [19].
That is to run the optimization problem online in the outer loop and perform the
multiple iterations in the inner loop, which becomes a much time-consuming work.
Therefore, the task of real-time reconstruction for the dynamic quantum state is chal-
lenging. Because in each weak measurement sampling, only one noisy measurement
value can be obtained. Meanwhile, the online algorithm only performs one iteration
for each estimation, and the estimated density matrix has to meet the quantum state
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constraints. In order to solve this problem and estimate the real-time quantum state
effectively at each sampling time, we study the online optimization algorithm for the
real-time QST.

The contribution of this paper is that a novel online QST algorithm with adaptive
learning rate to reconstruct the dynamic quantum state from the noisy measurements
by using the online alternating direction multiplier method (OADM) [20], called
QST-OADM, is proposed. The convex optimization problem of QST with quantum
state constraints is divided into two subproblems, one is the minimization of the Breg-
man divergence term with physical constraints for estimating the dynamic quantum
state ρk, and the other is the minimization of an l2 norm for estimating the mea-
surement noise ek. By defining an appropriate Bregman divergence term, the pro-
posed QST-OADM algorithm can simultaneously estimate the quantum state ρk and
measurement noise ek at each estimation. We use the first-order information of the
quantum state optimization problem, and the learning rate can be adaptively adjusted
at every estimation, which can achieve more efficient state estimation. The compu-
tational complexity of LS is O(d6)), and the computational complexity of ML is
O(d4), the main computational complexity of proposed QST-OADM is O(d3). The
computational complexity of MEG is also O(d3).The main difference between QST-
OADM and MEG is that the learning rate of QST-OADM can be adjusted adaptively
and the online processing framework OADM is used. In numerical experiments, our
proposed algorithm is used to estimate the dynamic density matrices in 1, 2, 3, and
4-qubit systems, respectively. The experimental results are compared with other ex-
isting online algorithms.

The rest of this paper is organized as follows. N-qubit online QST based on CWM
is introduced in Section 2. The QST-OADM algorithm is proposed in Section 3 for
solving the optimization problem of online QST with measurement noise. Numerical
experiments are carried out in Section 4. Finally, a conclusion is drawn in Section 5.

2 N-qubit Online QST Based on CWM

An open n-qubit system can be described by the continuous stochastic master equa-
tion in Schrödinger picture as [9]:

ρ(t +∆ t)−ρ(t) =− i
h̄ [H,ρ(t)]∆ t

+∑
[
Lρ(t)L†− 1

2

(
L†Lρ(t)+ρ(t)L†L

)]
∆ t

+
√

η ∑
[
Lρ(t)+ρ(t)L†

]
dW ,

(1)

where ρ(t)∈Cd×d denotes the quantum state density matrix; H ∈Cd×d is the Hamil-
tonian representing the total energy of the system; L is a bounded operator pertain-
ing to the Lindblad interaction; L† denotes the conjugate transposition of L; ∆ t is
the weak measurement time; h̄ is set to 1; η is the measure efficiency; dW denotes
the noise produced by measurement output for zero error measurement and satisfies
E(dW ) = 0, E[(dW )2] = ∆ t; the last two terms of (1) represent the dissipation and
backaction introduced by the measurement process.

The online estimation process of QST is shown in Fig.1, which is composed of
the process of CWM (the left part of Fig.1) and the online QST algorithm (the right
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Fig. 1 Online QST estimation process.

part of Fig.1). Next, we describe the online QST estimation process according to the
left and right parts of Fig.1.

1) left part: Firstly, as shown by the dashed box inside the left part, in the weak
measurement of a single qubit system, a two-level detection system P is introduced
and coupled with the estimated system S to form a joint system S⊗ P. Since the
interaction in the weak measurement is very small, the coupled system can be con-
sidered a closed system. Therefore, the state evolution equation of the joint system
is |Ψ(∆ t)〉 = U(∆ t)(|φ〉⊗ |ϕ〉), where |φ〉 and |ϕ〉 are the initial states of system P
and S, respectively; U(∆ t) := exp(−iξ H∆ t) is the joint evolution operator, in which
ξ > 0 is the interaction strength of the system; H = HP⊗HS is the Hamiltonian of
the joint system; HP and HS are the Hamiltonian of system P and S, respectively.
Secondly, as shown by the arrow in the projection measurement box, through the
projective measurement on the detection system P at time ∆ t, we can obtain the
eigenstate |o〉 of the System P. T hirdly, as shown by the weak measurement box,
we can combine the state |Ψ(∆ t)〉 of the joint system before and after weak mea-
surement, the output |o〉 of the System P, and the second-order Taylor expansion of
the evolution equation U(∆ t) to derive the weak measurement operators m0(∆ t) and
m1(∆ t) [16]. Fourth, as shown by the measurement operator box, based on the con-
structed weak measurement operators, we can obtain the measurement operator M
indirectly acting on the estimated system S (as shown by the dotted arrow) during
the continuous measurement process and the output value y with noise e. While the
weak measurement operators of the n-qubit system can be calculated by the weak
measurement operators of the two-level quantum system [18].

2) right part: Firstly, as shown by the three input arrows of the online QST al-
gorithm, they are the noisy measurement value y obtained at each time ∆ t, and the
previous estimates (q−1 represents unit delay operator), respectively. Secondly, as
shown by the two output arrows of the online QST algorithm, the online estimator
is expected to simultaneously reconstruct the current quantum state ρ̂ and measure-
ment noise ê to track the dynamic state. The goal of the proposed online algorithm is
twofold: to obtain estimates ρ̂ that feature a) high accuracy, and b) low computational
time-consuming, so that it may serve as an effective online tracking mechanism for
real-time applications.

For a two-level quantum system, its weak measurement operators are m0(∆ t) :=
I−
(
L1

†L1/2+ iH1
)

∆ t and m1(∆ t) := L1
√

∆ t [16], where we can select:

L1 = ξ σ ,H1 = H0 +uxHx, (2)
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in which σ denotes the Pauli matrix which can be one of {σx,σy,σz, I}, with σx =(
0 1
1 0

)
,σy =

(
0 −i
i 0

)
,σz =

(
1 0
0 −1

)
, and I is the 2×2 identity matrix; H0 is the

free Hamiltonian, ux is the external regulate value, and Hx is the control Hamiltonian
(The choice of Hx is related to the direction in which the control is tried to be added.
We select Hx = σx in the experiments.). The weak measurement operators of an n-
qubit system can be calculated from the tensor product of m0(∆ t) and m1(∆ t) as:

M1(∆ t) = m0(∆ t)⊗ . . .⊗m0(∆ t)⊗m0(∆ t)︸ ︷︷ ︸
n

,

M2(∆ t) = m0(∆ t)⊗ . . .⊗m0(∆ t)⊗m1(∆ t)︸ ︷︷ ︸
n

,

...
M2n(∆ t) = m1(∆ t)⊗ . . .⊗m1(∆ t)⊗m1(∆ t)︸ ︷︷ ︸

n

.

(3)

Considering the weak measurement efficiency and back action in the stochastic
open quantum system, the evolution operators of a two-level quantum system can be
formulated as: a0(∆ t) = m0(∆ t)+

√
ηL1 · dW and a1(∆ t) = m1(∆ t)+

√
ηL1 · dW

[16]. Similarly, the evolution operators of an n-qubit system can be calculated by the
tensor product of a0(∆ t) and a1(∆ t) as:

A1(∆ t) = a0(∆ t)⊗ . . .⊗a0(∆ t)⊗a0(∆ t)︸ ︷︷ ︸
n

,

A2(∆ t) = a0(∆ t)⊗ . . .⊗a0(∆ t)⊗a1(∆ t)︸ ︷︷ ︸
n

,

...
A2n(∆ t) = a1(∆ t)⊗ . . .⊗a1(∆ t)⊗a1(∆ t)︸ ︷︷ ︸

n

.

(4)

Based on the stochastic master equation (1) and the evolution operator (4), by
taking t = ∆ t ·k, the dynamic discrete evolution model of the estimated system S can
be obtained as [18]:

ρk+1 =
2n

∑
i=1

Ai(∆ t)ρkAi(∆ t)†, (5)

where k = 1,2, . . . ,N represents the sampling times.
The corresponding dynamic discrete measurement operators indirectly acting on

the estimated system S in the CWM process is [18]:

Mk+1 =
2n

∑
i=1

Mi(∆ t)MkMi(∆ t)†. (6)

In Schrödinger picture, the measurement value of the system S at each sampling
time is the initial measurement operator M1 acting on the dynamic quantum states
{ρi}k

i=1 as:
yi = tr(M†

1 ρi) = vec(M1)
† vec(ρi), i = 1,2, . . . ,k, (7)
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Table 1 The Construction Process of Measurement Record Sequence.

y1 y2 y3 ... yk

b1 tr(M†
1 ρ1)

b2 tr(M†
2 ρ2) tr(M†

1 ρ2)

b3 tr(M†
3 ρ3) tr(M†

2 ρ3) tr(M†
1 ρ3)

...
...

...
...

bk tr(M†
k ρk) tr(M†

k−1ρk) tr(M†
k−2ρk) . . . tr(M†

1 ρk)

Since a general density matrix ρk on n-qubits is defined through d2 = 4n parame-
ters, any estimation protocol may require collecting at least 4n data points to estimate
the density matrix. For online QST, the measurement value at each sampling time can
be combined into a measurement record sequence. Under the construction method of
(7), the measurement record sequence bk is composed of [y1,y2, . . . ,yk], which is a
dynamic sequence of data stream. However, from (7), we can observe that only one
measurement value {yk} is related to the quantum state density matrix ρk at k-th
sampling time, which is far from sufficient to reconstruct the density matrix ρk.

Therefore, at sampling time k, we derive the correspondence between the mea-
surement record sequence bk = {yi}k

i=1 and the quantum state ρk as shown in Table 1.
Specifically, based on Table 1, we summarize the relationship between bk = {yi}k

i=1
and ρk as:

yi = tr(M†
k−i+1ρk) = vec(Mk−i+1)

† vec(ρk),

i = 1, . . . ,k.
(8)

In order to make full use of the measurement record sequence and alleviate the
computational burden in the online processing, a sliding window containing the most
recent measurements is adopted in consideration. Therefore, we rewrite the measure-
ment record sequence as:

bk =

{
(y1, · · · ,yk−1,yk)

T , k < l,
(yk−l+1, · · · ,yk−1,yk)

T , k ≥ l,
(9)

where l is the size of the sliding window.
When the number of obtained measurements is less than l, the size of the window

is equal to the number of sampling times k. Otherwise, the size of sliding window
remains l (containing the l most recent measurements). The update strategy of the
sliding window is First-In-First-Out (FIFO), which allows the online stream of mea-
surements to be incorporated into the model, while gradually removing old measure-
ments.

Three points need to be emphasized here.
1) As can be seen from Table 1, the quantum state density matrix ρk can corre-

late with the measurement record sequence bk by the relationship [y1, . . . ,yi, . . .yk] =

[tr(M†
k ρk), . . . , tr(M

†
k−i+1ρk), . . . , tr(M

†
1 ρk)], which enables us to use the measurement

record sequence bk to estimate the real-time quantum state ρk. With the increase of
sampling times, the measurement information tends to be complete. This is why it
is possible to reconstruct the quantum state density matrix that changes dynamically
over time with one iteration.
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2) Different with the construction method of measurement values in Heisenberg
picture, where the online estimated state is always the unchanged initial state ρ1 and
then using the the system evolution model to obtain the estimated state ρ̂k at the
sampling time k [11,12,14,15]. The proposed relationship construction in Table 1
avoids the requirement of evolution through the system evolution model after each
estimation and enables real-time estimation of currently quantum states.

3) In fact, the corresponding relationship proposed in Table 1 is obtained with-
out considering the dissipation of the quantum system model, so when we use it to
estimate the real-time state with dissipation in the numerical simulation experiments
of this paper, compared with the minimum measurement times under the guidance of
compressed sensing theory, larger number of measurements is needed to achieve the
desired accuracy.

According to Table 1, we construct the sampling matrix corresponding to (9) as:

Ak =

{
(vec(Mk) , . . . ,vec(M2) ,vec(M1))

† , k < l,
(vec(Ml) , . . . ,vec(M2) ,vec(M1))

† , k ≥ l.
(10)

It is worth noting that when the number of samplings is greater than or equal
to l, the sampling matrix Ak remains unchanged. At the same time, considering the
measurement noise in the actual weak measurement process, using the sampling ma-
trix Ak and the density matrix ρk, we can rewrite bk as bk = Ak vec(ρk)+ ek, where
ek ∈ Rk(l < k) or ek ∈ Rl(k ≥ l) is the measurement noise and is assumed to be
Gaussian noise.

3 Online Optimization Algorithm with Measurement Noise

To minimize the measurement errors given the quantum constraints on density ma-
trices, the online QST can be formulated as a convex optimization problem with
constraints:

min
ρ̂

‖Ak vec(ρ̂)−bk‖2
2 +(1/ηk)Bθ (ρ̂, ρ̂k−1),

s.t. ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂,
(11)

where ρ̂ ∈ Cd×d denotes the quantum state density matrix to be estimated; ηk > 0
is a learning rate parameter; convex set {ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂} represents the
quantum state constraints; tr(X) denotes the sum of the diagonal elements of the
matrix X ; ‖Ak vec(ρ̂)−bk‖2

2 means to reduce the measurement error of the current
estimated state; Bθ (ρ̂, ρ̂k−1) is the Bregman divergence [21], which reflects that the
online estimation doesn’t want to forget what has been learned too far; it is equal to
the distance between the estimated state ρ̂ at current sampling time k and the previous
state estimation ρ̂k−1 under a smooth convex divergence function θ (∇θ denotes the
first derivative of θ ), defined as:

Bθ (ρ̂, ρ̂k−1) :=θ(vec(ρ̂))−θ (vec(ρ̂k−1))−

vec(ρ̂− ρ̂k−1)
†

∇θ (vec(ρ̂k−1)) .
(12)

The online alternating direction multiplier method (OADM) [20] is used to de-
velop the online QST algorithm. For the constrained convex optimization problem
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with separable two-objective variables, the basic idea of OADM is to decompose it
into two sub-problems about the original variables. Then minimize the correspond-
ing augmented Lagrangian functions of the two original variables in turn, and finally
update the Lagrangian multiplier by dual gradient ascent. Furthermore, only one up-
date is performed for the original variables and the Lagrange multiplier after each
sampling.

In order to transform problem (11) into a two-objective optimization problem, we
introduce the auxiliary variable ê. Hence, the online QST problem can be rewritten
as:

min
ρ̂,ê

(1/ηk)Bθ (ρ̂, ρ̂k−1)+ IC(ρ̂)+(1/2γ)‖ê‖2
2,

s.t. Ak vec(ρ̂)+ ê = bk,
(13)

where γ > 0 is a regularization parameter; IC(ρ̂) is the indicator function; when the
estimated state satisfies constraints C := {ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂}, IC(ρ̂) equals 0,
otherwise IC(ρ̂) is ∞.

The augmented Lagrangian of (13) is Lk(ρ̂, ê,λ ) := IC(ρ̂)+(1/ηk)Bθ (ρ̂, ρ̂k−1)+

(1/2γ)‖ê‖2
2−〈λ ,Ak vec(ρ̂)+ ê−bk〉+(α/2)‖Ak vec(ρ̂)+ ê−bk‖2

2, where λ is the
Lagrange multiplier and α > 0 is the penalty parameter.

Based on the OADM routine, the online QST problem can be splitted into two
small subproblems. Specifically, at the sampling time k, we first fix ê≡ êk−1 and λ ≡
λk−1 to minimize Lk (ρ̂, êk−1,λk−1) on the variable ρ̂; then fix ρ̂ ≡ ρ̂k and λ ≡ λk−1
to minimize Lk (ρ̂k, ê,λk−1) on the variable ê; finally, the Lagrangian multiplier λ is
updated by the dual gradient ascent method. Thus, in the OADM for online QST, the
estimated density matrix ρ̂k, Gaussian noise êk, and the Lagrange multiplier λk are
respectively: 

ρ̂k =argmin
ρ̂

{α

2
‖Ak vec(ρ̂)+ êk−1−bk−λk−1/α‖2

2

+ IC(ρ̂)+(1/ηk)Bθ (ρ̂, ρ̂k−1)},
(14a)

êk =argmin
ê
{(1/2γ)‖ê‖2

2

+
α

2
‖Ak vec(ρ̂k)+ ê−bk−λk−1/α‖2

2},
(14b)

λk =λk−1−α(Ak vec(ρ̂k)+ êk−bk). (14c)

Note that index k represents the sampling times in which we apply the continuous
measurement as well as the estimation updates. Therefore, only a single iteration is
performed for (14) so as to devise a computationally minimalistic method suitable for
real-time implementation. Since the Bregman divergence has diverse definitions [22],
we can simplify the solution of the density matrix problem by defining an appropriate
Bregman divergence term. In the following, we explicitly provide efficient methods
for solving the two optimization problems for updating primal variables ρ̂, ê in (14a),
(14b). The Lagrangian multiplier λ can be directly updated by (14c).

Subproblem of ρ̂k: we define the convex divergence function as a quadratic
pseudo-norm θ(x) := (1/2)‖x‖2

Pk
= x†(Pk/2)x, where x ∈ Cm×1 is the vector vari-

ables and Pk ∈ Cm×m is any symmetric positive definite weight matrix. Bring θ(x)
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into (12), the Bregman divergence term in this case can be written as:

Bθ (ρ̂, ρ̂k−1) = (1/2)‖vec(ρ̂− ρ̂k−1)‖2
Pk
, (15)

where we choose the weight matrix in the Bregman divergence term as

Pk = I−αηkA
†

k Ak � 0. (16)

More specifically, to ensure that Pk is positive definite, the learning rate ηk can be
adaptively calculated as:

ηk = 1/
(
ασ

2
max + c

)
, (17)

where σmax is the largest singular value of Ak (utilizing the random singular value
decomposition, rsvd), c > 0 is a small constant. Moreover, from the definition of Ak
in (10), it holds that Ak is a fixed matrix for k≥ l. As a result, the maximum singular
value used for ηk needs only be computed l times (where l is the size of the window).

At this time, substituting (15) into the density matrix subproblem (14a) can cancel
the quadratic term (α/2)vec(ρ̂)†A †

k Ak vec(ρ̂), which achieves the effect of perform-
ing a first-order linearization on the least square penalty term of the augmented La-
grangian at ρ̂k−1. Furthermore, the remaining Bregman divergence term after cancel-
lation is (1/2)‖vec(ρ̂− ρ̂k−1)‖2

I . Subsequently, the subproblem for ρ̂k is equivalent
to: argminρ̂{IC(ρ̂)+ 〈vec(ρ̂ − ρ̂k−1),αA †

k (Ak vec(ρ̂k−1)+ êk−1− bk−λk−1/α)〉+
1

2ηk
‖vec(ρ̂− ρ̂k−1)‖2

I }. Meanwhile, we let

vec(ρ̃k) :=vec(ρ̂k−1)−αηkA
†

k (Ak vec(ρ̂k−1) +

êk−1−bk−λk−1/α) ,
(18)

and merge the terms about vec(ρ̂− ρ̂k−1) to get a concise density matrix subproblem
as:

ρ̂k =argmin
ρ̂

‖vec(ρ̂− ρ̃k)‖2
I ,

s.t. ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂.
(19)

Using the Hermitian projection (ρ̃k + ρ̃
†
k )/2 to satisfy the constraint ρ̂† = ρ̂ . Fur-

thermore, since it is the calculation of the density matrix elements, (19) reduces to
the density matrix projection problem [23]:

ρ̂k =argmin
ρ̂

‖ρ̂− (ρ̃k + ρ̃
†
k )/2‖2

F ,

s.t. ρ̂ � 0, tr(ρ̂) = 1,
(20)

where ‖ · ‖F is the Frobenius norm.
Essentially, the problem of (20) is a nonlinear semidefinite programming prob-

lem and usually solved by interior-point method. Instead, we use a direct calculation
method to solve it by the singular value decomposition. (ρ̃k + ρ̃

†
k )/2 can be diago-

nalized into UΛ̃U† by unitary similarity, where Λ̃ = diag{a1, . . . ,ad} is a diagonal
matrix whose singular values are arranged in nonincreasing order; U ∈ Cd×d is a
unitary matrix. The optimal solution of (20) can be written as:

ρ̂k =UΛ̂U†, (21)



10 Kun Zhang et al.

where Λ̂ = diag{x1, . . . ,xd} and {xi}d
i=1 are the singular values of the density matrix

ρ̂k.
Λ̂ is obtained from

Λ̂ =argmin
Λ
‖Λ − Λ̃‖2

F ,

s.t. tr(Λ) = 1,Λ � 0,
(22)

which exists the analytic solution as:

xi = max{ai−κ,0} ,∀i, (23)

where κ is the solution of ∑
d
i=1 max{ai−κ,0}= 1.

Thus, we let κ = ai , i = 1, · · · ,d determine the interval in which the optimal κ

belongs. Assuming that aq−κ ≥ 0 and aq+1−κ < 0 are established in
[
aq,aq+1

]
,

the optimal κ can be calculated by ∑
q
i=1 (ai−κ) = 1 as:

κ = (
q

∑
i=1

ai−1)/q. (24)

Subproblem of êk: (14b) is an unconstrained quadratic program that admits an
analytical solution directly from first-order optimality condition of ê. Thus, êk is up-
dated as:

êk = (γα/(1+ γα))(λk−1/α−Ak vec(ρ̂k)+bk) . (25)

The summary of the online QST-OADM algorithm proposed in this paper is
shown in Algorithm 1.

Algorithm 1 QST-OADM
Require: Initial estimates ρ̂0, ê0 = 0, λ0 = 0; setting parameters α,γ > 0; window size l ∈ Z+.
1: for k = 1,2, . . . do
2: Obtain the measurement record sequence bk;
3: Calculate the learning rate ηk according to (17);
4: Calculate ρ̃k according to (18);
5: Run singular value decomposition on (ρ̃k + ρ̃

†
k )/2 as U diag{ai}U†;

6: Calculate singular values diag{xi} of ρ̂k according to (23) and (24);
7: Update ρ̂k according to (21);
8: Update êk according to (25);
9: Update λk according to (14c);

10: end for

Remarks:
1) Compared with the offline QST algorithms [4,5] (both the measurement val-

ues b and the sampling matrix A are all fixed for an invariant quantum state ρ), that
need to pass the same set of measurement data through multiple iterations to estimate
a fixed quantum state, the QST-OADM algorithm proposed in this paper focuses on
the general dynamic state and obtains the estimated state ρ̂k in only one iteration,
which provides a naturally online tracking protocol for real-time applications. More-
over, a key difference between online and offline QST is the Bregman divergence
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Bθ (ρ̂, ρ̂k−1) in (11) that calculates the distance between the current state to be es-
timated and the previous state estimation. It is the core embodiment of the tracking
ability of the QST-OADM.

2) Combining the online alternating direction multiplier method for simultaneous
estimation of the quantum state ρk and measurement noise ek is novel in online QST.
Compared with ML [11], LS [15] (ML and LS are essentially offline algorithms),
QST-OADM can explicitly solve the online QST problem without running iteratively
for every sampling. In terms of MEG [13], both QST-OADM and MEG use the first-
order information of quantum state density matrix problem, the main difference is that
the learning rate of QST-OADM can be adaptively adjusted at every estimation,which
can achieve fast and high-precision state tracking. The QST-OADM avoids pseudo-
inverse operation of LS solution for the quantum state subproblem whose calcula-
tion complexity is O(d6). The computational complexity of ML is O(d4). Similar
to MEG, the main computational complexity for each estimation of QST-OADM is
O(d3), which is the cost for singular value decomposition required for updating the
density matrix.

4 Numerical Simulation Experiments

In this section, three numerical simulation experiments are carried out. The first and
second experiments use the proposed QST-OADM algorithm to explore the impacts
of the external control strength ux and the sliding window size l on the reconstruction
performance of online QST, respectively. The online processing properties of the
proposed QST-OADM, camparing with maximum likelihood estimation (ML) [11],
matrix exponential gradient (MEG) [13], and least squares (LS) [15] are illustrated in
the third experiment.

In the experiments, the true quantum state ρk of the estimated system S is gen-
erated by (5). The measurement value yi at each sampling time is generated by (7).
The measurement record sequence is constructed by (9). The corresponding sam-
pling matrix Ak is defined by (10). The initial state density matrix of the true n-qubit
system is chosen as ρn

1 = ρ1⊗ . . .⊗ρ1︸ ︷︷ ︸
n

, ρ1 = [0.5,(1− i)/(
√

8);(1+ i)/(
√

8),0.5],

and the initial estimate is selected as ρ̂n
1 = ρ̂1⊗ . . .⊗ ρ̂1︸ ︷︷ ︸

n

, ρ̂1 = [0,0;0,1]. The initial

measurement operator is Mn
1 = σz⊗ . . .⊗σz︸ ︷︷ ︸

n

(in all cases we use the superscript n to

indicate the number of qubits, ranging in {1,2,3,4} in our experiments). In the weak
measurement operators of a two-level quantum system, L1 = ξ σz, H1 = σz + uxσx,
which are defined in (2). The measure efficiency η and the interaction strength ξ are
set to 0.5 and 0.07, respectively. The amplitude of the system stochastic noise dW is
0.001. The signal-to-noise ratio (SNR) of the Gaussian measurement noise e is 30dB.
The parameters involved in QST-OADM are set as follows: the penalty parameter
α = 5n, γ = 0.1, and the learning rate ηk can be adaptively determined by (17). For
the different comparison algorithms ML, LS, and MEG, we reimplement them on
the same quantum system, and each algorithm is adjusted to its best performance.
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Specifically, for MEG with manual learning rate, for 1, 2, 3, and 4-qubit systems, the
learning rate is tuned to 0.28, 0.33, 0.33, and 0.35, respectively. All simulations are
conducted in MATLAB R2016a, running in Inter Core i7-8750M CPU, clocked at
2.2GHz, with a memory of 16GB.

As for the real-time true state ρk which is in the free-evolution and evolves to
the maximum mixed state gradually. The performance of the estimated state ρ̂k is
evaluated by the fidelity based on Schatten’s 2-norm, defined as [24]

F1(ρk, ρ̂k) :=
tr(ρkρ̂k)

max{tr(ρ̂2
k ), tr(ρ

2
k )}

, (26)

where tr(ρ2) respresents the degree of mixing of the quantum state ρ , also named
purity.

The range of fidelity is [0,1]. The closer to 1, the more similar the estimated
state and the true state are. The process from pure state dissipation to the maxi-
mum mixed state corresponds to the decrease of purity from 1 to 1/d (d = 2n). In
addition, it is noteworthy that in most cases [3–5,9–11,13–16,18], the fidelity is de-

fined as F2(ρk, ρ̂k) := tr(
√√

ρ̂kρk
√

ρ̂k) [25]. At the same time, there are some other
definitions of fidelity, such as the superfidelity, defined as F3(ρk, ρ̂k) := tr(ρkρ̂k)+√

1− tr(ρ2
k )
√

1− tr(ρ̂2
k ) [26]; the A-fidelity, defined as F4(ρk, ρ̂k) := (tr(

√
ρk
√

ρ̂k))
2

[27]; and the geometric mean fidelity, defined as F5(ρk, ρ̂k) := tr(ρkρ̂k)/
√

tr(ρ̂2
k ) tr(ρ2

k )

[28]. We will show in subsection 4.1 that (26) is more suitable for measuring the sim-
ilarity of mixed states of open quantum systems.

4.1 Impact of the External Control Strength on Online QST

In this simulation experiment, we mainly test the impact of online QST with or with-
out the external control strength ux. In order to intuitively reflect the estimation re-
sults, we choose the 1-qubit system, whose evolution trajectory can be clearly drawn
on a Bloch sphere. For online QST, the number of sampling times is set to N = 100.
The size of the sliding window is selected as l = 16, which is shown to be sufficient
to reconstruct the density matrix of 1-qubit system.

Fig. 2 depicts that:
1) When ux = 0, from Fig. 2(a), the online estimation of quantum states cannot

be realized. The reason is that the trajectory of the true state is parallel to the x− y
plane and coincides with the initial measurement operator M1, which results in the
inability to measure sufficient effective information of the system. In contrast, when
a non-zero external control strength ux = 2 is applied, from Fig. 2(b), we observe that
QST-OADM can achieve stable state tracking after 9 samplings, which indicates the
external control strength is necessary for online QST.

2) The estimated state (blue) trajectory is consistent with the true state only when
the true state at the maximum mixed state (purity = 0.50) in Fig. 2(a). However, from
Fig. 2(c), for the purity when the accuracy of fidelity exceeds 90% (as a baseline), F1
is 0.56; F2 is 0.81; F3 and F4 are 0.68; and F5 is 0.62. F1 is the closest to the actual
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Fig. 2 (a) and (b) are the online estimation results with ux = 0 and ux = 2. The red solid line and the
blue dashed line in the Bloch sphere are the true state trajectory and estimated state trajectory by QST-
OADM, respectively. The red circle and the blue star represent the initial values of true and estimated
states, respectively. The number on the trajectory in the Bloch sphere of (b) denotes the sampling times.
(c) and (d) correspond to the performance evaluation of the F1−F5 fidelity in the case of ux = 0 and ux = 2,
respectively. The x-axis and y-axis represent the purity change process of true state and the fidelity of the
estimated state at each sampling time, respectively.

situations. From Fig. 2(d), among F1-F5, the performance evaluation of F1 is more
sensitive and only F1 achieves more than 90% fidelity in the ninth sampling. Thus, it
can be concluded that F1 gives a more precise and suitable evaluation performance.

4.2 Impact of the Sliding Window Size on Online QST

In this experiment, for 1, 2, 3, and 4-qubit systems, we compare the impact of differ-
ent sliding window sizes on online QST performance. The external control strength is
ux = 2. The number of sampling times is set to N = 500. The size of the sliding win-
dow is taken as l = 1, . . . ,100. At each window size, the comparison criterion is the
minimum number of sampling times kmin (or estimations) required to achieve more
than 90% fidelity. The kmin is expected to be smaller, indicating that the dynamic state
can be tracked with fewer samplings.

Fig. 3 depicts that as the size of the sliding window increases, the minimum num-
ber of sampling times kmin gradually decreases and stabilizes after the sliding window
reaches a certain size. It means that there is a proper sliding window size l∗ for on-
line QST of different number of qubits. For online estimation of 1, 2, 3, and 4-qubit
systems, the proper l∗ could be 8, 13, 16, and 75, respectively.
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Fig. 3 Impact of the sliding window size on online estimation. Black, blue, red and pink dashed lines
respresent where the proper window sizes for the 1, 2, 3, and 4-qubit systems are, respectively.

4.3 Online Processing Properties of QST-OADM, LS, ML, and MEG

In order to verify the online processing performance, we compare the proposed QST-
OADM with three existing algorithms (LS, ML, and MEG) in online QST of 1, 2,
3, and 4-qubit systems. As we have mentioned in Section 1, since Yang’s CVX-LS
algorithm [15] requires multiple iterations for each sampling time, which is time-
consuming for online processing, it will not be compared in this paper. As an alter-
native, we first resort to the pseudo-inverse command pinv in MATLAB to get the
solution of least squares by ignoring the quantum state constraints, and then obtain
the estimation ρ̂k that satisfies the constraints using projection (20). In ML for online
QST [11], the ML-estimater is set to execute a single run at each estimation. The
ML-estimater can not ensure that the estimated state satisfies is optimal by directly
setting the negative eigenvalue of the estimated state to 0 and trace normalization for
meeting the physical contraints. MEG [13] guarantees the positive semidefinite of the
density matrix through exponential operations. Based on experiments in subsection
4.1 and 4.2, for 1, 2, 3, and 4-qubit systems, the size of the sliding window is set to 8,
13, 16, and 75, respectively. The external control strength ux equals 2 and the number
of sampling times N equals 500.

Fig. 4 depicts the fidelity with respect to the number of samplings in the online
estimation process. One can see that, for 1, 2, 3, and 4-qubit systems, the number of
sampling times required for different algorithms to reach more than 90% fidelity is
QST-OADM (9, 19, 25, 168), LS (17, 21, 28, 256), ML (16, 22, 30, 262), and MEG
(10, 21, 29, 206), respectively, which shows that the proposed QST-OADM has the
lowest sampling times among the 4 algorithms.

We also compare the fidelity of different algorithms for a 4-qubit system run-
ning 200 times, which are 92.06% (QST-OADM), 81.86% (LS), 87.01% (ML), and
88.88% (MEG), respectively. Under the same sampling times, the estimation accu-
racy of QST-OADM is higher than the accuracy of LS, ML, and MEG algorithms.

Fig. 5 further explicitly shows the average running time of the 4 algorithms at each
sampling time. From Fig. 5 it indicates that the proposed QST-OADM algorithm is
the most efficient algorithm in the comparison. When n=1, 2, 3, and 4, the estimated
time required for QST-OADM is 0.0540s, 0.0616s, 0.0757s and 0.2061s respectively.
Moreover, as the number of qubits increases, the online processing advantages of
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Fig. 5 Comparison of average running time for each estimation of QST-OADM, LS, ML, and MEG algo-
rithms.

QST-OADM become even larger. For a 4-qubit system, the average running time
of QST-OADM, LS, ML, and MEG is 4.12e-4s, 1.13e-2s, 2.68e-2s, and 1.60e-3s,
respectively. The merit of the proposed algorithm is that it can track the dynamic
quantum state fast and efficiently, which embodies its superiority in online QST.
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5 Conclusion

In this paper, a real-time online algorithm QST-OADM with measurement noise was
developed, which required only one iteration at each sampling time. Furthermore, for
achieving high estimation accuracy and improving efficiency, the sliding window of
measurements and adaptive learning rate were adopted. The algorithm we proposed
was efficient and fast to estimate the real-time quantum state. Numerous simulation
experiments demonstrated the superiority of the potential merits of the method as a
real-time solution for state tomography in multi-qubit quantum systems.
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