Skip to main content
Log in

A novel coherence-based quantum steganalysis protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum steganalysis faces more challenges than classical steganalysis owing to the support of quantum mechanical principles such as Heisenberg uncertainty principle and non-cloning theorem. In this paper, a novel quantum steganalysis protocol based on pure state is proposed, which adheres to the fundamental fact that classical steganography tends to change the probability distribution of the carrier, and the physical properties that the unknown quantum state discrimination process is sensitive to the distribution in quantum state discrimination. After utilizing accurate calculation on the geometric coherence and 1/2-affinity coherence to obtain the probability that the transmitted quantum states can be correctly discriminated, effective detection on covert communication can be achieved by comparing the detected distribution with theoretical distribution. Meanwhile, steganographic detection rate and false alarm rate are introduced as two significant performance evaluation parameters of quantum steganalysis. In this paper, the quantum steganalysis and performance evaluation targeting the BB84-based quantum steganography proposed by Martin are given in detail. The geometric coherence and 1/2-affinity coherence change substantially when the steganographic embedding rate is above 0.2, and a high steganographic detection rate and a low false alarm rate can be obtained according to the proposed protocol. Besides, the impact on QKD efficiency can be controlled by adjusting the detection rate or adopting sampling detection strategy. It proves that the proposed protocol has a satisfactory quantum steganalysis performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in bell states. Phys. Rev. Lett. 86(25), 5807 (2001)

    Article  ADS  Google Scholar 

  2. Guo, G.C., Guo, G.P.: Quantum data hiding with spontaneous parameter down-conversion. Phys. Rev. A 68(4), 044303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002)

    Article  ADS  Google Scholar 

  4. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. El Allati, A., Medeni, M.O., Hassouni, Y.: Quantum steganography via Greenberger–Horne–Zeilinger GHZ4 state. Commun. Theor. Phys. 57(4), 577–582 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)

    Article  MATH  Google Scholar 

  7. Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. CMC: Comput. Mater. Contin. 56(1), 47–59 (2018)

    Google Scholar 

  8. Qu, Z.G., Jiang, L.M., Sun, L., Wang, M.M., Wang, X.J.: Continuous variable quantum steganography protocol based on quantum identity. Math. Biosci. Eng. 16(5), 4182–4195 (2019)

    Article  MathSciNet  Google Scholar 

  9. Qu, Z.G., Wu, S.Y., Liu, W.J., Wang, X.J.: Analysis and improvement of steganography protocol based on bell states in noise environment. CMC: Comput. Mater. Contin. 59(2), 607–624 (2019)

    Google Scholar 

  10. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43(9), 4531–4536 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Martin, K.: Steganographic Communication with Quantum Information. In: Proceeding of the 9th International Conference on Information Hiding, LNCS 4567, pp. 32–49 (2007)

  12. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, vol. 175, pp. 175–179 (1984)

  13. Liao, X., Wen, Q.Y., Sun, Y., Zhang, J.: Multi-party covert communication with steganography and quantum secret sharing. J. Syst. Softw. 83(10), 1801–1804 (2010)

    Article  Google Scholar 

  14. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782–4786 (2010)

    Article  ADS  Google Scholar 

  15. Qu, Z.G., Chen, X.B., Luo, M.X., Niu, X.X., Yang, Y.X.: Quantum steganography with large payload based on entanglement swapping of \(\phi \)-type entangled states. Opt. Commun. 284(7), 2075–2082 (2011)

    ADS  Google Scholar 

  16. Xu, S.J., Cheng, X.B., Niu, X.X., Yang, Y.X.: A Novel quantum covert channel protocol based on any quantum secure direct communication scheme. Commun. Theor. Phys. 59(5), 31–37 (2013)

    Google Scholar 

  17. Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379(12–13), 952–955 (2015)

    Article  MATH  Google Scholar 

  18. Mihara, T.: Multi-Party quantum steganography. Int. J. Theor. Phys. 56(2), 576–583 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mogos, G.: Stego quantum algorithm. In: International Symposium on Computer Science and its Applications, pp. 187–190 (2008)

  22. Mogos, G.: A quantum way to data hiding. Int. J. Multimed. Ubiquitous Eng. 4(2), 13–20 (2009)

    Google Scholar 

  23. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moiré pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  MATH  Google Scholar 

  24. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242–270 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Luo, G.F., Zhou, R.G., Mao, Y.L.: Two-level information hiding for quantum images using optimal LSB. Quantum Inf. Process. 18(10), 297 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Qu, Z.G., Li, Z.Y., Xu, G., Wu, S.Y., Wang, X.J.: Quantum image steganography protocol based on quantum image expansion and Grover search algorithm. IEEE Access. 7, 50849–50857 (2019)

    Article  Google Scholar 

  27. Hu, W.W., Zhou, R.G., Liu, X.A., Luo, J., Luo, G.F.: Quantum image steganography algorithm based on modified exploiting modification direction embedding. Quantum Inf. Process. 19(5), 1–28 (2019)

    MathSciNet  Google Scholar 

  28. Qu, Z.G., Wen, C.Z., Wang, X.J.: Matrix coding-based quantum image steganography algorithm. IEEE Access. 7, 35684–35698 (2019)

    Article  Google Scholar 

  29. Luo, G.F., Zhou, R.G., Hu, W.W.: Efficient quantum steganography scheme using inverted pattern approach. Quantum Inf. Process. 18(7), 222 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. Luo, J., Zhou, R.G., Hu, W.W., Luo, G.F.: Detection of steganography in quantum gray scale images. Quantum Inf. Process. 19(5), 1–17 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum steganography-Steganalysis system for audio signals. Multimed. Tools Appl. 79, 17551–17577 (2020)

    Article  Google Scholar 

  32. Chaharlang, J., Mosleh, M., Heikalabad, S.R.: A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circ. Syst. Signal Process. 39, 3925–3957 (2020)

    Article  Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  34. Luo, S.L., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69(3), 032106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  36. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Xiong, C.H., Kumar, A., Wu, J.D.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98(3), 032324 (2018)

    Article  ADS  Google Scholar 

  38. Zhang, H.J., Chen, B., Li, M., Fei, S.M., Long, G.L.: Estimation on geometric measure of quantum coherence. Commun. Theor. Phys. 67(2), 166–170 (2017)

    Article  ADS  MATH  Google Scholar 

  39. Belavkin, V.P.: Optimal multiple quantum statistical hypothesis testing. Stoch.: Int. J. Probab. Stoch. Process. 1(1–4), 315–345 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Holevo, A.S.: On asymptotically optimal hypotheses testing in quantum statistics. Teor. Veroyatnostei Primen. 23(2), 429–432 (1978)

    MathSciNet  MATH  Google Scholar 

  41. Eldar, Y.C., Forney, G.D.: On quantum detection and the square-root measurement. IEEE Trans. Inf. Theory 47(3), 858–872 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Spehner, D.: Quantum correlations and distinguishability of quantum states. J. Math. Phys. 55(7), 075211 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Xiong, C.H., Wu, J.D.: Geometric coherence and quantum state discrimination. J. Phys. A: Math. Theor. 51(41), 414005 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61373131, 61601358, 61303039, 61232016, 61501247), Sichuan Youth Science and Technique Foundation (No. 2017JQ0048), NUIST Research Foundation for Talented Scholars (2015r014), PAPD and CICAEET funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Qu or Min Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Huang, Y. & Zheng, M. A novel coherence-based quantum steganalysis protocol. Quantum Inf Process 19, 362 (2020). https://doi.org/10.1007/s11128-020-02868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02868-2

Keywords

Navigation