Skip to main content
Log in

Overview: recent development and applications of reduction and lackadaisicalness techniques for spatial search quantum walk in the near term

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The adjacency matrices of graphs provide the foundation for constructing the Hamiltonians of Continuous-Time Quantum Walks (CTQWs). Various classes of graphs have been identified to be highly reducible and the reduced Hamiltonian preserves the dynamics of the original system. This makes the CTQW implementation feasible in the near term for search problems of large size. Highly reducible Hamiltonians are desirable because existing quantum devices are of limited size in terms of the number of qubits. In this work, we review the recent developments of dimensionality reduction and coupling factor value finding techniques. The CTQWs based on a reduced Hamiltonian can search optimally when the correctly calculated coupling factor is used. We list identified highly reducible graphs and include their optimality proofs when correct coupling factors are used. In addition, we discuss the recent developments on Lackadaisical Quantum Walkers (LQW) (a type of coin-based discrete-time quantum walk) for one- and two-dimensional spatial search. The optimal lower upper bound remains open in one- and two-dimensional Discrete-Time Quantum Walk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. \(H_{\mathrm{seek}} = -\gamma H_{\mathrm{ra}} -|\omega \rangle \langle \omega |\) as seen in Algorithm 3

References

  1. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2):915 (1998)

    ADS  MathSciNet  Google Scholar 

  2. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    ADS  Google Scholar 

  3. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18):180501 (2009)

    ADS  MathSciNet  Google Scholar 

  4. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4):042330 (2010)

    ADS  MathSciNet  Google Scholar 

  5. Qiang, X., Loke, T., Montanaro, A., Aungskunsiri, K., Zhou, X., O’Brien, J.L., Wang, J.B., Matthews, J.C.: Efficient quantum walk on a quantum processor. Nat. Commun. 7(1), 1–6 (2016)

    Google Scholar 

  6. Shor, P.W.: Quantum computing. Doc. Math. 1(1000):1 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp. 352–361. IEEE (1993)

  8. Jordan, S.P., Lee, K.S., Preskill, J.: Quantum algorithms for quantum field theories. Science 336(6085), 1130–1133 (2012)

    ADS  Google Scholar 

  9. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3):1083 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(7):070502 (2007)

    ADS  Google Scholar 

  11. Chiang, C.-F., Hsieh, C.-Y.: Resonant transition-based quantum computation. Quantum Inf. Process. 16(5):120 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3:1036 (2012)

    ADS  Google Scholar 

  13. Gross, D., Eisert, J.: Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98(22):220503 (2007)

    ADS  Google Scholar 

  14. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5(1), 19–26 (2009)

    Google Scholar 

  15. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2):022312 (2003)

    ADS  Google Scholar 

  16. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)

  17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

  18. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2):022314 (2004)

    ADS  Google Scholar 

  19. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings, pp. 200–209. IEEE (2003)

  20. Novo L., Chakraborty S., Mohseni M., Neven H., Omar Y. (2015) Systematic dimensionality reduction for quantum walks: optimal spatial search and transport on non-regular graphs. Sci Rep 5:13304

    ADS  Google Scholar 

  21. Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116(10):100501 (2016)

    ADS  Google Scholar 

  22. Wong, T.G.: Spatial search by continuous-time quantum walk with multiple marked vertices. Quantum Inf. Process. 15(4), 1411–1443 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A. (2003) Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 59–68. ACM (2003)

  24. Childs, A.M., Schulman, L.J., Vazirani, U.V.: Quantum algorithms for hidden nonlinear structures. In: 48th Annual IEEE Symposium on Foundations of Computer Science, 2007. FOCS’07. pp. 395–404. IEEE (2007)

  25. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian nand tree. arXiv:quant-ph/0702144 (2007)

  28. Berry, S.D., Wang, J.B.: Two-particle quantum walks: entanglement and graph isomorphism testing. Phys. Rev. A 83(4):042317 (2011)

    ADS  Google Scholar 

  29. Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5):052313 (2010)

    ADS  Google Scholar 

  30. Douglas, B.L., Wang, J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41(7):075303 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Berry, S.D., Wang, J.B.: Quantum-walk-based search and centrality. Phys. Rev. A 82(4):042333 (2010)

    ADS  Google Scholar 

  32. Sánchez-Burillo, E., Duch, J., Gómez-Gardenes, J., Zueco, D.: Quantum navigation and ranking in complex networks. arXiv:1202.3471 (2012)

  33. Yang, Y.-G., Zhao, Q.-Q.: Novel pseudo-random number generator based on quantum random walks. Sci. Rep. 6:20362 (2016)

    ADS  Google Scholar 

  34. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2):1687 (1993)

    ADS  Google Scholar 

  35. Childs, A.M.: On the relationship between continuous-and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Caruso, F., Chin, A.W., Datta, A., Huelga, S.F., Plenio, M.B.: Highly efficient energy excitation transfer in light-harvesting complexes: the fundamental role of noise-assisted transport. J. Chem. Phys. 131(10):09B612 (2009)

    Google Scholar 

  37. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(17):11B603 (2008)

    Google Scholar 

  38. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. N J. Phys. 11(3):033003 (2009)

    Google Scholar 

  39. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. N. J. Phys. 10(11):113019 (2008)

    Google Scholar 

  40. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20):207901 (2003)

    ADS  Google Scholar 

  41. Kay, A.: Perfect, efficient, state transfer and its application as a constructive tool. Int. J. Quantum Inf. 8(04), 641–676 (2010)

    MATH  Google Scholar 

  42. Omar, Y., Moutinho, J., Melo, A., Coutinho, B., Kovacs, I., Barabasi, A.: Quantum link prediction in complex networks. APS 2019:R28–003 (2019)

    Google Scholar 

  43. Chiang, C.-F.: Optimal dimensionality reduced quantum walk and noise characterization. In: Proceedings of the Future Technologies Conference, pp. 914–929. Springer (2018)

  44. Koscinski, V., Chiang, C.-F.: Dimensionality reduction of the complete bipartite graph with \(k\) edges removed for quantum walks. In: 2018 IEEE Nanotechnology Symposium (ANTS), pp. 1–3. IEEE (2018)

  45. Chiang, C.-F., Gregory, A.: Quantum walk on dimensionality reduced complete bipartite graphs with k edges removed. In: 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE (2019)

  46. Nahimovs, N.: Lackadaisical quantum walks with multiple marked vertices. In: International Conference on Current Trends in Theory and Practice of Informatics, pp. 368–378. Springer (2019)

  47. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3):68 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Giri, P.R., Korepin, V.: Lackadaisical quantum walk for spatial search. Modern Phys. Lett. A 35(08):2050043 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108. Society for Industrial and Applied Mathematics (2005)

  50. Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. N. J. Phys. 5(1):83 (2003)

    Google Scholar 

  51. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5):052317 (2003)

    ADS  MathSciNet  Google Scholar 

  52. Venegas-Andraca, S., Ball, J., Burnett, K., Bose, S.: Quantum walks with entangled coins. N. J. Phys. 7(1):221 (2005)

    MathSciNet  Google Scholar 

  53. Szegedy, M.: Quantum speed-up of markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, 2004. Proceedings, pp. 32–41. IEEE (2004)

  54. Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for quantum walks. In: International Colloquium on Automata, Languages, and Programming, pp. 540–551. Springer (2010)

  55. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Government Press Office, Los Angeles, CA (1950)

    MATH  Google Scholar 

  56. Jafarizadeh, M., Sufiani, R., Salimi, S., Jafarizadeh, S.: Investigation of continuous-time quantum walk by using krylov subspace-lanczos algorithm. Eur. Phys. J. B 59(2), 199–216 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Gregory, A., Chiang, C.-F.: Simulation of quantum walks via hamiltonian reduction. In: 2018 IEEE Nanotechnology Symposium (ANTS), pp. 1–4. IEEE (2018)

  58. Chiang, C.-F., Hsieh, C.-Y.: Noise characterization: keeping reduction based per-turbed quantum walk search optimal. In: EPJ Web of Conferences, vol. 198, p. 00001. EDP Sciences (2019)

  59. Bousso, R.: The holographic principle. Rev. Modern Phys. 74(3):825 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Benioff, P.: Space searches with a quantum robot. arXiv:quant-ph/0003006 (2000)

  61. Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys. Rev. A 92(2):022338 (2015)

    ADS  Google Scholar 

  62. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72(5):056112 (2005)

    ADS  Google Scholar 

  63. Štefaňák, M., Bezděková, I., Jex, I.: Limit distributions of three-state quantum walks: the role of coin eigenstates. Phys. Rev. A 90(1):012342 (2014)

    ADS  Google Scholar 

  64. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A Math. Theor. 48(43):435304 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305:53–74 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

C. C. gratefully acknowledges support from the seed Grant funding (917035-13) from the State University of New York Polytechnic

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Fu Chiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Basis change with perturbation

Theorem 2

[43] Given a reduced 3 \(\times \) 3 Hamiltonian \(H_{\mathrm{seek}} = H^{(0)}+ H^{(1)}\) in the \((|\omega \rangle , |b_1\rangle , |b_2\rangle )\) basis where

$$\begin{aligned} H^{(0)} = \begin{bmatrix} -1 &{} 0 &{} 0 \\ 0 &{} 0 &{} v_1 \\ 0 &{} v_1 &{}v_3\\ \end{bmatrix} , \quad H^{(1)} = \begin{bmatrix} 0 &{} 0 &{} v_2 \\ 0 &{} 0 &{} 0 \\ v_2&{} 0 &{} 0\\ \end{bmatrix} \end{aligned}$$
(53)

\(v_1\) and \(v_2\) are negative numbers and \(v_3\) is a non-positive number where \(v_1/v_2 \ge 1\). Let the eigenvectors basis of \(H^{(0)}\) be \((|\omega \rangle , |e_1\rangle , |e_2\rangle )\). Let \(\kappa = \frac{v_3}{v_1} \ge 0\) and \(\beta _\pm =\frac{\kappa \pm \sqrt{\kappa ^2 + 4}}{2}\), then eigenvectors

$$\begin{aligned} |e_1\rangle = \frac{(|b_1\rangle + \beta _+ |b_2\rangle )}{\sqrt{1 + \beta _+^2}}, \quad |e_2\rangle = \frac{(|b_1\rangle + \beta _- |b_2\rangle )}{\sqrt{1 + \beta _-^2}} \end{aligned}$$
(54)

with corresponding eigenvalues \(\lambda _\pm = v_1 \beta _\pm \). H expressed in the \((|\omega \rangle , |e_1\rangle , |e_2\rangle )\) eigenbasis is

$$\begin{aligned} H_{\mathrm{seek}} = \begin{bmatrix} -1 &{} v_2 \frac{\beta _+}{\sqrt{\beta _+^2 +1}} &{} v_2 \frac{\beta _-}{\sqrt{\beta _-^2 +1}} \\ \frac{v_2 \sqrt{\beta _+^2 + 1 }}{\beta _+ - \beta _-} &{} \lambda _+ &{} 0 \\ \frac{-v_2 \sqrt{\beta _-^2 + 1 }}{\beta _+ - \beta _-} &{} 0 &{} \lambda _-\\ \end{bmatrix} \end{aligned}$$
(55)

Proof

Let \(|e'\rangle = |b_1\rangle +\beta |b_2\rangle \) be an eigenvector of \(H^{(0)}\) with eigenvalue \(\lambda \). After some calculation, we obtain \(\lambda _{\pm } = {\beta _{\pm } v_1}\) where

$$\begin{aligned} \beta _{\pm } = \frac{\kappa \pm \sqrt{\kappa ^2 + 4}}{2}, \quad \kappa = \frac{v_3}{v_1}. \end{aligned}$$
(56)

Let eigenvector \(|e'_1\rangle = |b_1\rangle +\beta _+ |b_2\rangle \) with eigenvalue \(\lambda _+\) and eigenvector \(|e'_2\rangle = |b_1\rangle +\beta _- |b_2\rangle \) with eigenvalue \(\lambda _-\), by renormalization we have

$$\begin{aligned} {} |e_1\rangle = \frac{|e'_1\rangle }{\sqrt{\beta _+^2 +1}}, \quad |e_2\rangle = \frac{|e'_2\rangle }{\sqrt{\beta _-^2 +1}}. \end{aligned}$$
(57)

By basis change and Eq. (53) with \(H^{(1)}\) in the \((|\omega \rangle , |e_1\rangle , |e_2\rangle )\) eigenbasis, we obtain \(H^{(1)}|\omega \rangle \) as

$$\begin{aligned} v_2|b_2\rangle = \frac{v_2 \sqrt{\beta _+^2 +1}}{\beta _+ -\beta _-}|e_1\rangle + \frac{-v_2 \sqrt{\beta _-^2 +1}}{\beta _+ -\beta _-}|e_2\rangle . \end{aligned}$$
(58)

Hence, the Hamiltonian \(H_{\mathrm{seek}}\) can be expressed as shown in Eq. (55). \(\square \)

Lemma 1

[43] (Computational basis to eigenbasis) Given a derived reduced Hamiltonian \(H_{\mathrm{seek}}\) written in the \((|\omega \rangle , |e_1\rangle , |e_2\rangle )\) basis as shown in Theorem 2, we then know that (a) Hamiltonian \(H_{\mathrm{seek}}\) is symmetric and (b) \(\beta _+> 0 > \beta _-\) and \(\lambda _+ <0, \lambda _- > 0\).

Proof

With the value of \(\beta _\pm \) as shown in Theorem 2, we know \(\beta _+ \beta _- = -1 \), we know

$$\begin{aligned} \beta _+ (\beta _+ - \beta _-) = \beta _+^2 +1,\quad \beta _-(\beta _+ - \beta _-) = -(1+ \beta _-^2), \end{aligned}$$
(59)
$$\begin{aligned} v_2 \frac{\beta _+}{\sqrt{\beta _+^2 +1}} = \frac{v_2 \sqrt{\beta _+^2 + 1 }}{\beta _+ - \beta _-}, \quad v_2 \frac{\beta _-}{\sqrt{\beta _-^2 +1}} = \frac{-v_2 \sqrt{\beta _-^2 + 1 }}{\beta _+ - \beta _-}. \end{aligned}$$
(60)

Hence, H is symmetric. For property (b), it is immediate since \(\sqrt{\kappa ^2 + 4}> \kappa > 0 \) and \(\lambda _{\pm } = v_1\beta _{\pm }\). \(\square \)

By Lemma 1, \(H_{\mathrm{seek}}\) can be written in the \((|\omega \rangle , |e_1\rangle ,|e_2\rangle )\) basis as

$$\begin{aligned} H_{\mathrm{seek}} = \begin{bmatrix} -1 &{} \delta _1 &{} \delta _2 \\ \delta _1&{} \lambda _+ &{} 0 \\ \delta _2 &{} 0 &{} \lambda _-\\ \end{bmatrix} . \end{aligned}$$
(61)

where

$$\begin{aligned} \delta _1 = v_2 \frac{\beta _+}{\sqrt{\beta _+^2 +1}}, \quad \delta _2 = v_2 \frac{\beta _-}{\sqrt{\beta _-^2 +1}}. \end{aligned}$$
(62)

Appendix B: Low-state transport escape rate

Theorem 3

[43] Given a Hamiltonian \(H_{\mathrm{seek}}\) in the form shown in Lemma 1, it is desirable to have \(\lambda _+ = -1\) such that \(|\omega \rangle \) and \(|e_1\rangle \) form the basis for the two states of the lowest eigenvalue. If \(v_1= -\gamma N(\sqrt{\alpha (1- \alpha )})\), \(v_2= -\gamma (\sqrt{N (1-\alpha )})\) then the degeneracy between site energies of \(|\omega \rangle \) and \(|e_1\rangle \) facilitates transport between these two low energy states, hence \(\gamma = (N\sqrt{\alpha (1- \alpha )}\beta _+)^{-1}\). The transport between \(|\omega \rangle \) and \(|e_2\rangle \) is negligible since \(\delta _2\) is much smaller than \(\lambda _-\).

Proof

Since we desire to have faster transport between the lowest eigen energy states, we need to set

$$\begin{aligned} \lambda _+ = v_1\beta _+ = -1. \end{aligned}$$
(63)

With the fact that \(v_1 = -\gamma N(\sqrt{\alpha (1- \alpha )})\), we need to set

$$\begin{aligned} \gamma = (N\sqrt{\alpha (1- \alpha )}\beta _+)^{-1} \end{aligned}$$
(64)

From Eq. (62) and \(\lambda _- = v_1\beta _{-}\), we know \(\delta _2\) is much smaller than \(\lambda _-\) because

$$\begin{aligned} \frac{\delta _2}{\lambda _-} = \frac{v_2}{v_1 \sqrt{(\beta _-^2 +1)}}=\frac{1}{\sqrt{\alpha N (\beta _-^2 +1)}}< \frac{1}{\sqrt{\alpha N}}. \end{aligned}$$
(65)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, CF. Overview: recent development and applications of reduction and lackadaisicalness techniques for spatial search quantum walk in the near term. Quantum Inf Process 19, 364 (2020). https://doi.org/10.1007/s11128-020-02876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02876-2

Keywords

Navigation