Skip to main content
Log in

Low-decoherence quantum information transmittal scheme based on the single-particle various degrees of freedom entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, aiming at the problem that the quality of quantum encoding channels will get worse with transmittal distance increasing owing to the interaction between environmental noises and quantum systems. A new low-decoherence quantum information deferent scheme is proposed on the basis of the single-particle diverse degrees of freedom entangled states from dissimilar perspectives, its encoding channel and transmittal distance are separated. It can reduce amounts of noise interference in the information transmittal process from the origin by entanglement in various degrees of freedom of the single-particle, thus can better resist channel’s decoherence and has better deferent characteristics compared with other schemes. Besides, it can also solve the difficulty that cannot concurrently generate multiple remote entanglement pairs by preparation many single-particle entangling in different degrees of freedom. In sum, our proposed scheme is beneficial to promote the development of quantum information transmission and has a good innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Y., Li, Y., Zu, C., Zu, C., Wei, D., Wei, D.: Enhance quantum teleportation under correlated amplitude damping decoherence by weak measurement and quantum measurement reversal. npj Quantum Inf. 18(1), 1–11 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Schlosshauer, M.: Quantum decoherence. Phys. Rep. 831, 1–57 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53(9), 2891–2901 (2014)

    Article  MATH  Google Scholar 

  4. Li, Y.B., Song, T.T., Huang, W., Zhan, W.W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogdanov, S.I., Boltasseva, A., Shalaev, V.M.: Overcoming quantum decoherence with plasmonics. Science 364(6440), 532–533 (2019)

    Article  ADS  Google Scholar 

  6. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  7. Anderson, M., Müller, T., Huwer, J., Skiba-Szymanska, J., Krysa, A.B., Stevenson, R.M., Heffernan, J., Ritchie, D.A., Shields, A.J.: Quantum teleportation using highly coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6(1), 1–7 (2020)

    Article  Google Scholar 

  8. Hu, X.M., Zhang, C., Liu, B.H., Huang, Y. F., Li, C.F., Guo, G.C.: Experimental multi-level quantum teleportation. arXiv:1904.12249 (2019)

  9. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518(7540), 516–519 (2015)

    Article  ADS  Google Scholar 

  10. Barasiński, A., Černoch, A., Lemr, K.: Demonstration of quantum controlled teleportation for discrete variables on linear optical devices. arXiv:1903.10881 (2019)

  11. Zhou, Z., Sheng, Y., Niu, P., Yin, L., Long, G., Hanzo, L.: Measurement-device-independent quantum secure direct communication. Sci. China-Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  Google Scholar 

  12. Yang, C.W., Tsai, C.W.: Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 19(4), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bebrov, G., Dimova, R.: Teleportation-based quantum secure communication using quantum channel compression. Eur. Phys. J. D 74(2), 1–7 (2020)

    Article  MATH  Google Scholar 

  14. Sun, Y., Yan, L., Chang, Y., Zhang, S., Shao, T., Zhang, Y.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 34(1), 1950004 (2019)

    Article  ADS  Google Scholar 

  15. Huang, L., Wu, X., Zhou, T.: Robustness of the concatenated quantum error-correction protocol against noise for channels affected by fluctuation. Phys. Rev. A 100(4), 042321 (2019)

    Article  ADS  Google Scholar 

  16. Le, D.T., Van Nguyen, H., Nguyen, A.B.: Coping with noise in joint remote preparation of a general two-qubit state by using nonmaximally entangled quantum channel. Commun. Phys. 28(1), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  17. Chen, Q.Q., Lu, M., Hao, S.Y.: Effect of noise on joint remote preparation of an arbitrary two-qubit state via a Brown state. Indi J. Phys 1–10 (2019)

  18. Van Hop, N.: Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results. Quantum Inf. Process. 18(11), 340 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kapit, E., Roushan, P., Neill, C., Boixo, S., Smelyanskiy, V.: Entanglement and complexity of interacting qubits subject to asymmetric noise. arXiv:1905.01792 (2019)

  20. Zhou, R.G., Qian, C., Xu, R.: A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in noisy environment. Int. J. Theor. Phy 59(1), 134–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gomes, A.L.G., Gomes, R.A., Peres, O.L.G.: Quantum decoherence and relaxation in neutrinos using long-baseline data. arXiv: 2001.09250 (2020)

  22. Zwolak, M., Riedel, C.J., Zurek, W.H.: Amplification, decoherence, and the acquisition of information by spin environments. Sci. Rep. 6(1), 25277 (2016)

    Article  ADS  Google Scholar 

  23. Sterian, A.R.: Basic research for designing the erbium doped fiber amplifier in long distance cable communications. Technium 2(1), 29–37 (2020)

    Article  Google Scholar 

  24. Tang, J.M., Zeng, Q.S., Luo, Y.B., Ye, Q.Y.: The relationship between single-particle commuting observables entangled states and the spin-orbit coupling. Quantum Inf. Process. 19(1), 1–18 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. Elhelw, A.R., Mohamed, A.E.N.A., Rashed, A.N., Elsiefy, M.Z.: Design of high speed optical fiber cables and transmission techniques in advanced optical networks. Menoufia J. Electron. Eng. Res. 29, 71–77 (2020)

    Article  Google Scholar 

  26. Blais, S., Greshishchev, Y., Schvan, P., Betty, I., McGhan, D.: Coherent transceiver for high speed optical communications. Oppor. Chall. (2019). https://doi.org/10.1109/LEOS.2004.1363585

    Article  Google Scholar 

  27. Wang, S.W., Sun, D.N., Dong, Y., Xie, W.L., Shi, H.X., Yi, L.L., Hu, W.S.: Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system. Opt. Lett 39(4), 888–891 (2014)

    Article  ADS  Google Scholar 

  28. Li, L., Ma, Q., Cao, M., Zhang, G., Zhang, Y., Jiang, L., Gao, C., Yao, J., Gong, S.S.: High stability michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror. Sens. Actuator B-Chem 234, 674–679 (2016)

    Article  Google Scholar 

  29. Dierikx, E.F., Wallin, A.E., Fordell, T., Myyry, J., Koponen, P., Merimaa, M., Pinkert, T.J., Koelemeij, J.C.J., Peek, H.Z., Smets, R.: White rabbit precision time protocol on long-distance fiber links. IEEE Trans. Ultrasonics. Ferroelectr. Freq. Control 63(7), 945–952 (2016)

    Article  Google Scholar 

  30. Wang, B.X., Mao, Y., Shen, L., Zhang, L., Lan, X.B., Ge, D.W., Gao, Y.Y., Li, J.H., Tang, Y.L., Tang, S.B., et al.: Long-distance transmission of quantum key distribution coexisting with classical optical communication over weakly-coupled few-mode fiber. arxiv:2002.00420 (2020)

  31. Chen, L.X., She, W.L.: Teleportation of a controllable orbital angular momentum generator. Phys. Rev. A 80(6), 063831 (2009)

    Article  ADS  Google Scholar 

  32. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  33. Yang, L., Ma, H.Y., Zheng, C., Ding, X.L., Gao, J.C., Long, L.: Quantum communication scheme based on quantum teleportation. Acta Phys. Sin 66, 23 (2017)

    Google Scholar 

  34. Li, D.F., Wang, R.J., Zhang, F.L., Baagyere, E., Qin, Z., Xiong, H., Zhan, H.Y.: A noise immunity controlled quantum teleportation protocol. npj Quantum Inf. 15(11), 4819–4837 (2016)

    Article  MATH  Google Scholar 

  35. Bavontaweepanya, R. Effect of depolarizing noise on entangled photons (2018). https://doi.org/10.1088/1742-6596/1144/1/012047

  36. Zhao, H., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phy 56(3), 720–728 (2017)

    Article  MATH  Google Scholar 

  37. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bang, J., Ryu, J., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. J. Phys. A-Math. Theor 51(13), 135302 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Domínguez-Serna, F., Rojas, F.: Spin–orbit hybrid entangled channel for spin state quantum teleportation using genetic algorithms. Quantum Inf. Process. 18(1), 32 (2019)

    Article  ADS  MATH  Google Scholar 

  41. Chen, M.C., Wu, D., Su, Z.E., Cai, X.D., Wang, X.L., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Efficient measurement of multiparticle entanglement with embedding quantum simulator. Phys. Rev. Lett. 116(7), 070502 (2016)

    Article  ADS  Google Scholar 

  42. Zhou, H., Byrd, G.T.: Quantum circuits for dynamic runtime assertions in quantum computation. IEEE Comput. Archit. Lett 18(2), 111–114 (2019)

    Article  Google Scholar 

  43. Huo, M., Huo, M., Qin, J., Cheng, J., Cheng, J., Yan, Z., Yan, Z., Qin, Z., Qin, Z., Su, X., Jia, X., Jia, X., Xie, C., Peng, K.: Deterministic quantum teleportation through fiber channels. Sci. Adv. 4(10), 9401 (2018)

    Article  ADS  Google Scholar 

  44. Marrucci, L., Karimi, E., Slussarcnko, S., Piccirillo, B., Santamato, E., Nagali, E., Sciarrino, F.: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13(6), 064001 (2011)

    Article  ADS  Google Scholar 

  45. Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96(16), 163905 (2006)

    Article  ADS  Google Scholar 

  46. Fu, D.Z., Wang, Y.L., Zhang, P.: Survey on the methods of detecting the orbital angular momentum of a vortex beam. Phys. Exp. 39(12), 1–12 (2019)

    ADS  Google Scholar 

  47. Yang, W.D., Qiu, X.D., Chen, L.X.: Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams. Chin. J. Lasers 47(5), 216–232 (2020)

    Google Scholar 

  48. Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88(25), 2579011–2579014 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nanjing University of Aeronautics and Astronautics (NUAA) offering sufficient materials for us to study this paper.

Author information

Authors and Affiliations

Authors

Contributions

J.-M.T. conceived and realized the project. Q.-S.Z. supervised and guided the project. Y.-W. gathered and analyzed the data. J.-M.T. and Q.-S.Z. wrote the manuscript. J.-M.T., Q.-S.Z., Y.-W. and D.-G.F. revised the manuscript. Because D.-G.F. made some contributions to revise the design of the work and important intellectual content, thus he was also listed as a collaborator. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Qing-Sheng Zeng.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JM., Zeng, QS., Wu, Y. et al. Low-decoherence quantum information transmittal scheme based on the single-particle various degrees of freedom entangled states. Quantum Inf Process 19, 389 (2020). https://doi.org/10.1007/s11128-020-02891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02891-3

Keywords

Navigation