Skip to main content
Log in

Deterministic tripartite sharing of an arbitrary single-qubit operation with the five-qubit cluster state in a given entanglement structure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using the five-qubit cluster state in a given entanglement structure as quantum channel, and employing some local operations and classical communication, a tripartite scheme for sharing a single-qubit operation on a remote target state is proposed. It has some obvious advantages; for example, the probability of success is 100%, i.e., it is deterministic, rather than probabilistic; the operation to be shared is arbitrary, other than restricted; the quantum and classical resource consumptions are relative economic, and the difficulty and intensity of the necessary operations are relatively low and small, while the intrinsic efficiency is higher than most existing QOS schemes, and so on. The underlying physical essence why the cluster state in the entanglement structure can be used to fulfill the task is revealed via deep studies. Besides, some concise discussions about the security are made and the experimental feasibility of the present theoretical scheme is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  3. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    ADS  Google Scholar 

  4. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  5. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    ADS  Google Scholar 

  6. Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)

    ADS  Google Scholar 

  7. Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015)

    ADS  Google Scholar 

  8. Hu, X.M., Zhang, C., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: Experimental multi-level quantum teleportation. arXiv:1904.12249 (2019)

  9. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., Zeilinger, A., Pan, J.W.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)

    ADS  Google Scholar 

  10. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quantum Eng. 1, e13 (2019)

    Google Scholar 

  11. Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18, 353 (2019)

    ADS  MathSciNet  Google Scholar 

  12. Li, D.F., Wang, R.J., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf. Process. 18, 147 (2019)

    ADS  MathSciNet  Google Scholar 

  13. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    ADS  MATH  Google Scholar 

  16. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    ADS  Google Scholar 

  17. Dür, W., Vidal, G., Cirac, J.I.: Optimal conversion of nonlocal unitary operations. Phys. Rev. Lett. 89, 057901 (2002)

    ADS  Google Scholar 

  18. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    ADS  Google Scholar 

  19. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    ADS  Google Scholar 

  20. Ji, Q.B., Liu, Y.M., Liu, X.S., Yin, X.F., Zhang, Z.J.: Single-qubit operation sharing with Bell and W product states. Commun. Theor. Phys. 60, 165 (2013)

    ADS  Google Scholar 

  21. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Xing, H., Liu, D.C., Xing, P.F., Xie, C.M., Liu, X.S., Zhang, Z.J.: Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two Bell states or a GHZ state. Int. J. Quantum Inf. 12, 1450012 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Ji, Q.B., Liu, Y.M., Xie, C.M., Yin, X.F., Zhang, Z.J.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)

    ADS  MATH  Google Scholar 

  25. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)

    MATH  Google Scholar 

  26. Xie, C.M., Liu, Y.M., Xing, H., Zhang, Z.J.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 841 (2015)

    ADS  Google Scholar 

  27. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quant. Inf. Process. 14, 4255 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks—deterministic quantum operation sharing schemes with Bell states. Sci. China-Phys. Mech. Astron. 59, 660302 (2016)

    Google Scholar 

  29. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    ADS  Google Scholar 

  30. Hein, M., Dür, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A 71, 032350 (2005)

    ADS  Google Scholar 

  31. Vallone, G., Pomarico, E., Martini, D.E., Mataloni, P.: One-way quantum computation with two-photon multiqubit cluster states. Phys. Rev. A 78, 042335 (2008)

    ADS  Google Scholar 

  32. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    ADS  Google Scholar 

  33. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Z.H., Chen, H.W., Liu, W.J., Xu, J.: Quantum simultaneous secret distribution with dense coding by using cluster states. Quantum Inf. Process. 12, 3745 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Wang, Z.Y.: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process. 12, 1321 (2013)

    ADS  MATH  Google Scholar 

  36. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Kao, S.H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16, 139 (2017)

    ADS  MATH  Google Scholar 

  39. Yu, Y., Zha, X.W., Li, W.: Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state. Quantum Inf. Process. 16, 41 (2017)

    ADS  MATH  Google Scholar 

  40. Saha, D., Nandan, S., Panigrahi, P.K.: Local implementations of non-local quantum gates in linear entangled Channel. J. Quantum Inf. Sci. 4, 97 (2014)

    Google Scholar 

  41. Vyas, N., Saha, D., Panigrahi, P.K.: Rooted-tree network for optimal non-local gate implementation. Quantntum Inf. Process. 15, 3855 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Vishnu, P.K., Joy, D., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer. Quantum Inf. Process. 17, 274 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Bennett, C.H., Divinecnzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    ADS  Google Scholar 

  45. Chen, S., Chen, Y.A., Zhao, B., Yuan, Z.S., Schmiedmayer, J., Pan, J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)

    ADS  Google Scholar 

  46. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    ADS  Google Scholar 

  47. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    ADS  Google Scholar 

  49. Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329 (2005)

    ADS  MATH  Google Scholar 

  50. Solano, E., Cesar, C.I., de Matos Filho, R.L., Zagury, N.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)

    ADS  Google Scholar 

  51. Riebe, M., Häffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    ADS  Google Scholar 

  52. Barrett, M.D., Chiaverini, J., Schaetz, T., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    ADS  Google Scholar 

  53. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  54. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Lim, H.T., Kim, Y.S., Ra, Y.S., Bae, J., Kim, Y.H.: Experimental realization of an approximate transpose operation for qutrit systems using a structural physical approximation. Phys. Rev. A 86, 042334 (2012)

    ADS  Google Scholar 

  56. Kim, M.S., Agarwal, G.S.: Reconstruction of an entangled state in cavity QED. Phys. Rev. A 59, 3044 (1999)

    ADS  Google Scholar 

  57. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    ADS  Google Scholar 

  58. Peng, Z.H., Zou, J., Liu, X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED. J. Phys. B: At. Mol. Opt. Phys. 41, 065505 (2008)

    Google Scholar 

  59. Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005)

    ADS  Google Scholar 

  60. Zhang, X.L., Gao, K.L., Feng, M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    ADS  Google Scholar 

  61. Guo, G.P., Zhang, H., Tu, T., Guo, G.C.: One-step preparation of cluster states in quantum-dot molecules. Phys. Rev. A 75, 050301 (2007)

    ADS  Google Scholar 

  62. Gonta, D., Radtke, T., Fritzsche, S.: Generation of two-dimensional cluster states by using high-finesse bimodal cavities. Phys. Rev. A 79, 062319 (2009)

    ADS  Google Scholar 

  63. Economou, S.E., Lindner, N., Rudolph, T.: Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010)

    ADS  Google Scholar 

  64. Sun, L., Li, G.: Preparation of four-mode cluster states with distant atomic ensembles. Phys. Rev. A 85, 065801 (2012)

    ADS  Google Scholar 

  65. Zhang, Z.R., Li, C.Y., Wu, C.W., Dai, H.Y., Li, C.Z.: Creating cluster states in flux qubits with XY-type exchange interactions. Phys. Rev. A 88, 044303 (2013)

    ADS  Google Scholar 

  66. Inaba, K., Tokunaga, Y., Tamaki, K., Igeta, K., Yamashita, M.: High-fidelity cluster state generation for ultracold atoms in an optical lattice. Phys. Rev. Lett. 112, 110501 (2014)

    ADS  Google Scholar 

  67. Houhou, O., Aissaoui, H., Ferraro, A.: Generation of cluster states in optomechanical quantum systems. Phys. Rev. A 92, 063843 (2015)

    ADS  Google Scholar 

  68. Yang, Z., Li, Z., Ma, S., Li, F.: One-step generation of continuous-variable quadripartite cluster states in a circuit QED system. Phys. Rev. A 96, 012327 (2017)

    ADS  Google Scholar 

  69. Gimeno-Segovia, M., Rudolph, T., Economou, S.E.: Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett. 123, 070501 (2019)

    ADS  Google Scholar 

  70. Zhang, A.N., Lu, C.Y., Zhou, X.Q., Chen, Y.A., Zhao, Z., Yang, T., Pan, J.W.: Experimental construction of optical multiqubit cluster states from Bell states. Phys. Rev. A 73, 022330 (2006)

    ADS  Google Scholar 

  71. Lu, C.Y., et al.: Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91 (2007)

    Google Scholar 

  72. Yukawa, M., et al.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)

    ADS  Google Scholar 

  73. Ceccarelli, R., Vallone, G., De Martini, F., Mataloni, P., Cabello, A.: Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett. 103, 160401 (2009)

    ADS  Google Scholar 

  74. Gao, W.B., Yao, X.C., Cai, J.M., et al.: Experimental measurement-based quantum computing beyond the cluster-state model. Nat. Photonics 5, 117 (2011)

    ADS  Google Scholar 

  75. Su, X.L., Zhao, Y.P., Hao, S.H., Jia, X.J., Xie, C.D., Peng, K.C.: Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Express 37, 5178 (2012)

    Google Scholar 

  76. Yao, X.C., et al.: Experimental demonstration of topological error correction. Nature 482, 489 (2012)

    ADS  Google Scholar 

  77. Bell, B.A., Herrera-Martí, D.A., Tame, M.S., Markham, D., Wadsworth, W.J., Rarity, J.G.: Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014)

    ADS  Google Scholar 

  78. Zhang, C., Huang, Y.F., Liu, B.H., Li, C.F., Guo, G.C.: Experimental generation of a high-fidelity four-photon linear cluster state. Phys. Rev. A 93, 062329 (2016)

    ADS  Google Scholar 

  79. Schwartz, I., Cogan, D., Schmidgall, E.R., et al.: Deterministic generation of a cluster state of entangled photons. Science 354, 435 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 12075205 and 61701002, the Key Project of the Domestic Visiting and Studying for Outstanding Youth Cadre Teacher in Colleges and Universities of Anhui Province (Grant No. gxfxZD2016193), and the Project for Natural Science of West Anhui University (Grant Nos. WXZR1507 and 2008LW003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yuan, H. Deterministic tripartite sharing of an arbitrary single-qubit operation with the five-qubit cluster state in a given entanglement structure. Quantum Inf Process 20, 3 (2021). https://doi.org/10.1007/s11128-020-02893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02893-1

Keywords

Navigation