Skip to main content
Log in

Practical decoy-state quantum random number generator with weak coherent sources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Considering imperfect experimental conditions, here we give a practical proposal on the decoy-state quantum random number generator with weak coherent sources. In the proposal, three different intensities of light sources are used to estimate the contribution of single-photon pulses. System randomness is characterized and simulated through the minimum entropy. Numerical simulation results show that our new scheme can extract out randomness close to the asymptotic case where the fraction of single-photon pulses are exactly known. Furthermore, a proof-of-principle experimental demonstration is presented, showing excellent agreement between experiment and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

  2. Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  3. Rarity, J., Owens, P., Tapster, P.: Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994)

    Article  ADS  Google Scholar 

  4. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. J. Mod. Opt. 47, 595 (2000)

    ADS  Google Scholar 

  5. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675 (2000)

    Article  ADS  Google Scholar 

  6. Dynes, J.F., Yuan, Z.L., Sharpe, A.W., Shields, A.J.: A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 93, 031109 (2008)

    Article  ADS  Google Scholar 

  7. Wahl, M., Leifgen, M.: An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 98, 171105 (2011)

    Article  ADS  Google Scholar 

  8. Nie, Y.Q., Zhang, H.F., Zhang, Z., Wang, J., Ma, X., Zhang, J., Pan, J.W.: Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104, 051110 (2014)

    Article  ADS  Google Scholar 

  9. Rogina, B.M.: Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78, 045104 (2007)

    Article  ADS  Google Scholar 

  10. Boweles, J., Quintino, M.T., Brunner, N.: Certifying the dimension of classical and quantum systems in a prepare-and-measure scenario with independent devices. Phys. Rev. Lett. 112, 140407 (2014)

    Article  ADS  Google Scholar 

  11. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  12. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  13. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  14. Wang, C., Song, X.T., Yin, Z.Q., Wang, S., Chen, W., Zhang, C.M., Guo, G.C., Han, Z.F.: Phasereference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)

    Article  ADS  Google Scholar 

  15. Wang, D., Li, M., Guo, G.C., Wang, Q.: An improved scheme on decoy-state method of measurement device-independent quantum key distribution. Sci. Rep. 5, 15130 (2015)

    Article  ADS  Google Scholar 

  16. Lunghi, T., Brask, J.B., Bowles, J.: Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015)

    Article  ADS  Google Scholar 

  17. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)

    Article  MathSciNet  Google Scholar 

  18. Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  19. Mao, C.C., Li, J., Zhu, J.R., Zhang, C.M., Wang, Q.: An improved proposal on the practical quantum key distribution with biased basis. Quantum Inf. Process 16, 256 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  20. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)

    Article  ADS  Google Scholar 

  21. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, D.D., Gao, S., Li, G.C., Xue, L., Wang, L.W., Lu, C.B.: Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback. Opt. Express 26, 22793 (2018)

    Article  ADS  Google Scholar 

  23. Fei, X.W., Yin, Z.Q., Cui, C.H., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Optimality of quantum randomness certification with independent devices. J. Opt. Soc. Am. B 35, 2186 (2018)

    Article  ADS  Google Scholar 

  24. Fei, X.W., Yin, Z.Q., Huang, W., Xu, B.J., Wang, S., Chen, W., Han, Y.G., Guo, G.C., Han, Z.F.: Tighter bound of quantum randomness certification for independent-devices scenario. Sci. Rep. 7(1), 14666 (2017)

    Article  ADS  Google Scholar 

  25. Frohlich, B., Lucamarini, M., Dynes, J.F., Comandar, L.C., Tam, W.W.S., Plews, A., Sharpe, A.W., Yuan, Z.L., Shields, A.J.: Long-distance quantum key distribution secure against coherent attacks”. Optica 4, 163 (2017)

    Article  ADS  Google Scholar 

  26. Ding, H.J., Liu, J.Y., Zhang, C.H., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process 19, 60 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  27. Ding, H.J., Chen, J.J., Ji, L., Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45, 1711 (2020)

    Article  ADS  Google Scholar 

  28. Liu, J.Y., Ding, H.J., Zhang, C.M., Xie, S.P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12, 014059 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Key R&D Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 11774180, 61590932 61705110 and the Leading-edge technology Program of Jiangsu Natural Science Foundation (BK20192001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SS., Ding, HJ., Zhang, CH. et al. Practical decoy-state quantum random number generator with weak coherent sources. Quantum Inf Process 19, 396 (2020). https://doi.org/10.1007/s11128-020-02902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02902-3

Keywords

Navigation