Skip to main content
Log in

NOON state generation beyond the Lamb–Dicke limit in trapped-ion systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we show that multi-phonon NOON states can be generated in a two-dimensional anisotropic trapped-ion system. In the proposal, two laser pulses are applied to an ion along different directions in the ion trap plane to exchange the information between the external and internal states of the ion. Different from the previous frameworks, the proposal is outside the Lamb–Dicke regime. The distinct advantage of the proposed scheme is that the entanglement generation is deterministic and no measurement on the system is required. Numerical simulations show that the fidelity of the prepared entangled states is strongly affected by Lamb–Dicke parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boto, A.N., Kok, P., Abrams, D.S., Braunstein, S.L., Williams, C.P., Dowling, J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85(13), 2733–2736 (2000)

    ADS  Google Scholar 

  2. Kok, P., Lee, H., Dowling, J.P.: Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65(5), 052104 (2002)

    ADS  Google Scholar 

  3. Afek, I., Ambar, O., Silberberg, Y.: High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    ADS  MATH  Google Scholar 

  5. Ning, W., Huang, X.-J., Han, P.-R., Li, H., Deng, H., Yang, Z.-B., Zhong, Z.-R., Xia, Y., Xu, K., Zheng, D., Zheng, S.-B.: Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019)

    ADS  Google Scholar 

  6. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54(6), R4649–R4652 (1996)

    ADS  Google Scholar 

  7. Wang, H.B., Kobayashi, T.: Phase measurement at the Heisenberg limit with three photons. Phys. Rev. A 71(2), 021802(R) (2005)

    ADS  Google Scholar 

  8. Lee, H., Kok, P., Cerf, N.J., Dowling, J.P.: Linear optics and projective measurements alone suffice to create large-photon-number path entanglement. Phys. Rev. A 65(3), 030101(R) (2002)

    ADS  Google Scholar 

  9. Hofmann, H.F., Ono, T.: High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light. Phys. Rev. A 76(3), 031806(R) (2007)

    ADS  Google Scholar 

  10. Cable, H., Dowling, J.P.: Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phy. Rev. Lett. 99(16), 163604 (2007)

    ADS  Google Scholar 

  11. Chen, Y.A., Bao, X.H., Yuan, Z.S., Chen, S., Zhao, B., Pan, J.W.: Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104(4), 043601 (2010)

    ADS  Google Scholar 

  12. Merkel, S.T., Wilhelm, F.K.: Generation and detection of NOON states in superconducting circuits. New J. Phys. 12(9), 093036 (2010)

    ADS  Google Scholar 

  13. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106(6), 060401 (2011)

    ADS  Google Scholar 

  14. Strauch, F.W.: All-resonant control of superconducting resonators. Phys. Rev. Lett. 109(21), 210501 (2012)

    ADS  Google Scholar 

  15. Xiong, S.J., Sun, Z., Liu, J.M., Liu, T., Yang, C.P.: Efficient scheme for generation of photonic NOON states in circuit QED. Opt. Lett. 40(10), 2221–2224 (2015)

    ADS  Google Scholar 

  16. Su, Q.P., Yang, C.P., Zheng, S.B.: Fast and simple scheme for generating NOON states of photons in circuit QED. Sci. Rep. 4, 3898 (2014)

    Google Scholar 

  17. Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)

    ADS  Google Scholar 

  18. Rameez-ul, I., Ikram, M., Saif, F.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B: At, Mol. Opt. Phys. 40(7), 1359–1368 (2007)

  19. Zhong, Z.R.: A simplified scheme for realizing multi-atom NOON state. Opt. Commun. 283(1), 189–191 (2010)

    ADS  Google Scholar 

  20. Nikoghosyan, G., Hartmann, M.J., Plenio, M.B.: Generation of mesoscopic entangled states in a cavity coupled to an atomic ensemble. Phys. Rev. Lett. 108(12), 123603 (2012)

    ADS  Google Scholar 

  21. Liu, K., Chen, L.B., Shi, P., Zhang, W.Z., Gu, Y.J.: Generation of NOON states via Raman transitions in a bimodal cavity. Quantum Inf. Process. 12(9), 3057–3066 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)

    ADS  Google Scholar 

  23. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103(3), 259–328 (1998)

    MATH  Google Scholar 

  24. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    ADS  Google Scholar 

  25. Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)

    ADS  Google Scholar 

  26. Zhong, Z.R., Huang, X.J., Yang, Z.B., Shen, L.T., Zheng, S.B.: Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion. Phys. Rev. A 98(3), 032311 (2018)

    ADS  Google Scholar 

  27. Li, D.S., Wu, C.W., He, L.Z., Wu, W., Chen, P.X.: Quantum simulation of the Weyl equation with a trapped ion. Quantum Inf. Process. 18(5), 151 (2019)

    ADS  MathSciNet  Google Scholar 

  28. Wright, J., Auchter, C., Chou, C.-K., Graham, R.D., Noel, T.W., Sakrejda, T., Zhou, Z., Blinov, B.B.: Toward a scalable quantum computing architecture with mixed species ion chains. Quantum Inf. Process. 15(12), 5339–5349 (2016)

    ADS  Google Scholar 

  29. Zhang, J., Um, M., Lv, D., Zhang, J.N., Duan, L.M., Kim, K.: NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 121(16), 160502 (2018)

    ADS  Google Scholar 

  30. Rodríguez-Méndez, D., Moya-Cessa, H.: High NOON states in trapped ions. Phys. Scr. T147, 014028 (2012)

    ADS  Google Scholar 

  31. Hu, Y.M., Feng, M., Lee, C.: Adiabatic Mach-Zehnder interferometer via an array of trapped ions. Phys. Rev. A 85(4), 043604 (2012)

    ADS  Google Scholar 

  32. Leibfried, D., Barrett, M.D., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304(5676), 1476–1478 (2004)

    ADS  Google Scholar 

  33. Moya-Cessa, H., Jonathan, D., Knight, P.L.: A family of exact eigenstates for a single trapped ion interacting with a laser field. J. Mod. Optic. 50(2), 265–273 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrodinger cat” superposition state of an atom. Science 272(5265), 1131–1136 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J.: Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76(11), 1796–1799 (1996)

    ADS  Google Scholar 

  36. Stevens, D., Brochard, J., Steane, A.M.: Simple experimental methods for trapped-ion quantum processors. Phys. Rev. A 58(4), 2750–2759 (1998)

    ADS  Google Scholar 

  37. Wei, L.F., Liu, Y.-X., Nori, F.: Engineering quantum pure states of a trapped cold ion beyond the Lamb-Dicke limit. Phys. Rev. A 70(6), 063801 (2004)

    ADS  Google Scholar 

  38. Wei, L.F., Liu, S.Y., Lei, X.L.: Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit. Phys. Rev. A 65(6), 062316 (2002)

    ADS  Google Scholar 

  39. Wang, D., Hansson, T., Larson, A., Karlsson, H.O., Larson, J.: Quantum interference structures in trapped-ion dynamics beyond the Lamb-Dicke and rotating wave approximations. Phys. Rev. A. 77(5), 053808 (2008)

    ADS  Google Scholar 

  40. Dermez, R., Müstecaplğlu, E.: Long-lived entangled qudits in a trapped three-level ion beyond the Lamb-Dicke limit. Phys. Scr. 79(1), 015304 (2009)

    ADS  Google Scholar 

  41. Guo, H.: Zhao, L-y: Emission spectrum of a harmonically trapped two-level atom. Phys. Rev. A. 73(5), 053822 (2006)

    ADS  Google Scholar 

  42. de-Matos-Filho, R.L., Vogel, W.: Squeezing in resonance fluorescence from a trapped ion. Phys. Rev. A. 49(4), 2812–2815 (1994)

  43. Morigi, G., Cirac, J.I., Lewenstein, M., Zoller, P.: Ground-state laser cooling beyond the Lamb-Dicke limit. Euro. Phys. Lett. 39, 13 (1997)

    ADS  Google Scholar 

  44. Wei, L.F., Liu, S.Y., Lei, X.L.: Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit. Phys. Rev. A 65, 062316 (2002)

    ADS  Google Scholar 

  45. Steane, A.: The ion trap quantum information processor. Appl. Phys. B 64, 623 (1997)

    ADS  Google Scholar 

  46. Vogel, W., Filho, R.L.: Nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A 52(5), 4214–4217 (1995)

    ADS  Google Scholar 

  47. de-Matos-Filho, R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A 54(5), 4560–4563 (1996)

  48. de-Matos-Filho, R.L., Vogel, W.: Quantum nondemolition measurement of the motional energy of a trapped atom. Phys. Rev. Lett. 76(24), 4520–4523 (1996)

  49. Morigi, G., Eschner, J., Cirac, J.I., Zoller, P.: Laser cooling of two trapped ions: sideband cooling beyond the Lamb-Dicke limit. Phys. Rev. A 59(5), 3797–3808 (1999)

    ADS  Google Scholar 

  50. Förster, L., Karski, M., Choi, J.M., Steffen, A., Alt, W., Meschede, D., Widera, A., Montano, E., Lee, J.H., Rakreungdet, W., Jessen, P.S.: Microwave control of atomic motion in optical lattices. Phys. Rev. Lett. 103(23), 233001 (2009)

    ADS  Google Scholar 

  51. Cheng, X.H., Arrazola, I., Pedernales, J.S., Lamata, L., Chen, X., Solano, E.: Nonlinear quantum Rabi model in trapped ions. Phys. Rev. A 97(2), 023624 (2018)

    ADS  Google Scholar 

  52. Puebla, R., Hwang, M.J., Casanova, J., Plenio, M.B.: Protected ultrastrong coupling regime of the two-photon quantum Rabi model with trapped ions. Phys. Rev. A 95(6), 063844 (2017)

    ADS  Google Scholar 

  53. Ivanov, S.S., Vitanov, N.V., Korolkova, N.V.: Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses. New J. Phys. 15, 023039 (2013)

    ADS  Google Scholar 

  54. Häffner, H., Gulde, S., Riebe, M., Lancaster, G., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003)

    ADS  Google Scholar 

  55. Benhelm, J., Kirchmair, G., Roos, C.F., Blatt, R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)

    Google Scholar 

  56. Barton, P.A., Donald, C.J.S., Lucas, D.M., Stevens, D.A., Steane, A.M., Stacey, D.N.: Measurement of the lifetime of the 3d2D5/2 state in 40Ca+. Phys. Rev. A 62, 032503 (2000)

    Google Scholar 

  57. Nägerl, H.C., Roos, Ch., Leibfried, D., Rohde, H., Thalhammer, G., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Investigating a qubit candidate: Spectroscopy on the S1/2 to D5/2 transition of a trapped calcium ion in a linear Paul trap. ibid. 61, 023405 (2000)

  58. Lewty, N.C., Chuah, B.L., Cazan, R., Sahoo, B.K., Barrett, M.D.: Spectroscopy on a single trapped ion for nuclear magnetic octupole moment determination. Opt. Exp. 20, 21379 (2012)

    ADS  Google Scholar 

  59. Chuah, B.L., Lewty, N.C., Radu, Cazan, Barrett, M.D.: Sub-Doppler cavity cooling beyond the Lamb-Dicke regime. Phys. Rev. A 87, 043420 (2013)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 12074070, and the Natural Science Foundation of Fujian Province under Grants No. 2019J01219 and No. 2020J01471.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Jun Su or Zhi-Rong Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XJ., Chen, L., Su, WJ. et al. NOON state generation beyond the Lamb–Dicke limit in trapped-ion systems. Quantum Inf Process 19, 406 (2020). https://doi.org/10.1007/s11128-020-02906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02906-z

Keywords

Navigation