Skip to main content
Log in

N-qudit SLOCC equivalent W states are determined by their bipartite reduced density matrices with tree form

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It has been proved that N-qudit (i.e., d-level subsystems) generalized W states are determined by their bipartite reduced density matrices. In this paper, we prove that only \((N-1)\) of the bipartite reduced density matrices are sufficient. Furthermore, we find that N-qudit W states preserve their determinability under stochastic local operation and classical communication (SLOCC). That is, all multipartite pure states that are SLOCC equivalent to N-qudit W states can be uniquely determined (among pure, mixed states) by their \((N-1)\) of the bipartite reduced density matrices, if the \((N-1)\) pairs of qudits constitute a tree graph on N vertices, where each pair of qudits represents an edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D., Landon-Cardinal, O., Poulin, D., Liu, Y.K.: Efficient quantum state tomography. Nat. Commun. 1, 149 (2010)

    Article  ADS  Google Scholar 

  2. Christandl, M., Renner, R.: Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012)

    Article  ADS  Google Scholar 

  3. Ohliger, M., Nesme, V., Eisert, J.: Efficient and feasible state tomography of quantum many-body systems. New J. Phys. 15, 015024 (2013)

    Article  ADS  Google Scholar 

  4. Schwemmer, C., Knips, L., Richart, D., Weinfurter, H., Moroder, T., Kleinmann, M., Guhne, O.: Systematic errors in current quantum state tomography tools. Phys. Rev. Lett. 114, 080403 (2015)

    Article  ADS  Google Scholar 

  5. Lu, D.W., Xin, T., Yu, N.K., Ji, Z.F., Chen, J.X., Long, G.L., Baugh, J., Peng, X.H., Zeng, B., Laflamme, R.: Tomography is necessary for universal entanglement detection with single-copy observables. Phys. Rev. Lett. 116, 230501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Acharya, A., Kypraios, T., Guta, M.: A comparative study of estimation methods in quantum tomography. J. Phys. A: Math. Theor. 52, 234001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

    Article  Google Scholar 

  8. Liu, B., Gao, F., Huang, W.: QKD-based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  9. Linden, N., Popescu, S., Wootters, W.K.: Almost every pure state of three qubits is completely determined by its two-particle reduced density matrices. Phys. Rev. Lett. 89, 207901 (2002)

    Article  ADS  Google Scholar 

  10. Linden, N., Wootters, W.K.: The parts determine the whole in a generic pure quantum state. Phys. Rev. Lett. 89, 277906 (2002)

    Article  ADS  Google Scholar 

  11. Diosi, L.: Three-party pure quantum states are determined by two two-party reduced states. Phys. Rev. A 70, 010302(R) (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Jones, N.S., Linden, N.: Parts of quantum states. Phys. Rev. A 71, 012324 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Walck, S.N., Lyons, D.W.: Only n-qubit Greenberger-Horne-Zeilinger states are undetermined by their reduced density matrices. Phys. Rev. Lett. 100, 050501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, J.X., Dawkins, H., Ji, Z.F., Johnston, N., Kribs, D., Shultz, F., Zeng, B.: Uniqueness of quantum states compatible with given measurement results. Phys. Rev. A 88, 012109 (2013)

    Article  ADS  Google Scholar 

  15. Xin, T., Lu, D.W., Klassen, J., Yu, N.K., Ji, Z.F., Chen, J.X., Ma, X., Long, G.L., Zeng, B., Laflamme, R.: Quantum state tomography via reduced density matrices. Phys. Rev. Lett. 118, 020401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wyderka, N., Huber, F., Guhne, O.: Almost all four-particle pure states are determined by their two-body marginals. Phys. Rev. A 96, 010102(R) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Huang, S.L., Chen, J.X., Li, Y.N., Zeng, B.: Quantum state tomography for generic pure states. Sci. China-Phys. Mech. Astron. 61, 110311 (2018)

    Article  ADS  Google Scholar 

  18. Parashar, P., Rana, S.: N-qubit W states are determined by their bipartite marginals. Phys. Rev. A 80, 012319 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rana, S., Parashar, P.: Optimal reducibility of all W states equivalent under stochastic local operations and classical communication. Phys. Rev. A 84, 052331 (2011)

    Article  ADS  Google Scholar 

  20. Yu, N.K.: Multipartite W-type state is determined by its single-particle reduced density matrices among all W-type states. Phys. Rev. A 87, 052310 (2013)

    Article  ADS  Google Scholar 

  21. Wu, X., Tian, G.J., Huang, W., Wen, Q.Y., Qin, S.J., Gao, F.: Determination of W states equivalent under stochastic local operations and classical communication by their bipartite reduced density matrices with tree form. Phys. Rev. A 90, 012317 (2014)

    Article  ADS  Google Scholar 

  22. Parashar, P., Rana, S.: Reducible correlations in Dicke states. J. Phys. A: Math. Theor. 42, 462003 (2009)

    Article  ADS  Google Scholar 

  23. Wu, X., Yang, Y.H., Wen, Q.Y., Qin, S.J., Gao, F.: Determination of Dicke states equivalent under stochastic local operations and classical communication. Phys. Rev. A 92, 052338 (2015)

    Article  ADS  Google Scholar 

  24. Zhou, D.L.: Irreducible multiparty correlations in quantum states without maximal rank. Phys. Rev. Lett. 101, 180505 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wu, X., Yang, Y.H., Wang, Y.K., Wen, Q.Y., Qin, S.J., Gao, F.: Determination of stabilizer states. Phys. Rev. A 92, 012305 (2015)

    Article  ADS  Google Scholar 

  26. Martinez, D., Solis-Prosser, M.A., Canas, G., Jimenez, O., Delgado, A., Lima, G.: Experimental quantum tomography assisted by multiply symmetric states in higher dimensions. Phys. Rev. A 99, 012336 (2019)

    Article  ADS  Google Scholar 

  27. Canas, G., Etcheverry, S., Gomez, E.S., Saavedra, C., Xavier, G.B., Lima, G., Cabello, A.: Experimental implementation of an eight-dimensional Kochen-Specker set and observation of its connection with the Greenberger-Horne-Zeilinger theorem. Phys. Rev. A 90, 012119 (2014)

    Article  ADS  Google Scholar 

  28. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. Tonchev, H.S., Vitanov, N.V.: Quantum phase estimation and quantum counting with qudits. Phys. Rev. A 94, 042307 (2016)

    Article  ADS  Google Scholar 

  30. Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 032325 (2006)

    Article  ADS  Google Scholar 

  31. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewers for their valuable suggestions. This work is supported by National Natural Science Foundation of China (Grant Nos. 61701553, 61601171, 61772134, 61802023) and the Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2016-2-10, SKLNST-2018-1-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-Yue Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we prove for any \((s,t)\in E\) and \(i_t,j_s \ne 0\), if

$$\begin{aligned} {{r}_{\left( {{i'}_{1}}\cdots {{i'}_{s-1}}{{0}_{s}}{{i'}_{s+1}}\cdots {{i'}_{t-1}}{{i}_{t}}{{i'}_{t+1}}\cdots {{i'}_{N}} \right) \left( {{i'}_{1}}\cdots {{i'}_{s-1}}{{0}_{s}}{{i'}_{s+1}}\cdots {{i'}_{t-1}}{{i}_{t}}{{i'}_{t+1}}\cdots {{i'}_{N}} \right) }}=0, \end{aligned}$$

then

$$\begin{aligned} {{r}_{\left( {{i'}_{1}}\cdots {{i'}_{s-1}}{{j}_{s}}{{i'}_{s+1}}\cdots {{i'}_{t-1}}{{0}_{t}}{{i'}_{t+1}}\cdots {{i'}_{N}} \right) \left( {{i'}_{1}}\cdots {{i'}_{s-1}}{{j}_{s}}{{i'}_{s+1}}\cdots {{i'}_{t-1}}{{0}_{t}}{{i'}_{t+1}}\cdots {{i'}_{N}} \right) }}=0. \end{aligned}$$

Proof

For any \((s,t)\in E\), comparing the coefficients of \(|0_si_t\rangle \langle 0_si_t|\), \(|j_s0_t\rangle \langle j_s0_t|\) and \(|0_si_t\rangle \langle j_s0_t|\) from \(\rho _M^{st}\) and \(\rho _{SW}^{st}\), since \(i_t,j_s \ne 0\), we have

$$\begin{aligned} \sum \limits _{{{i}_{V\backslash \{s,t\}}}=0}^{d-1}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}}\text {=}{{\left| {{c}_{ti}} \right| }^{2}}, \end{aligned}$$
(14)
$$\begin{aligned} \sum \limits _{{{i}_{V\backslash \{s,t\}}}=0}^{d-1}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}\text {=}{{\left| {{c}_{sj}} \right| }^{2}}, \end{aligned}$$
(15)

and

$$\begin{aligned} \sum \limits _{{{i}_{V\backslash \{s,t\}}}=0}^{d-1}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}\text {=}{{c}_{ti}}{{\bar{c}}_{sj}}. \end{aligned}$$
(16)

As \({{r}_{\left( {{i'}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i'}_{N}} \right) \left( {{i'}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i'}_{N}} \right) }}=0\), by property (ii) of positive semidefinite matrices, we can get \({{r}_{\left( {{i'}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i'}_{N}} \right) \left( {{i'}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i'}_{N}} \right) }}=0\) too. Then we can rewrite Eqs. (14), (15) and (16) as follows

$$\begin{aligned}&\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}}\text {=}{{\left| {{c}_{ti}} \right| }^{2}}, \end{aligned}$$
(17)
$$\begin{aligned}&\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}\text {+}{{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }}\text {=}{{\left| {{c}_{sj}} \right| }^{2}}, \end{aligned}$$
(18)

and

$$\begin{aligned} \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}\text {=}{{c}_{ti}}{{\bar{c}}_{sj}}, \end{aligned}$$
(19)

where the sum \(\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}\) varies over \(0,1,\ldots ,d-1\) at the \(1,\ldots ,s-1,s+1,\ldots ,t-1,t+1,\ldots ,N\) parties, excepts for \({{i'}_{1}}\cdots {{i'}_{s-1}}{{i'}_{s+1}}\cdots {{i'}_{t-1}}{{i'}_{t+1}}\cdots {{i'}_{N}}\). Therefore, from the above three equations, we can get

$$\begin{aligned} \begin{aligned}&{{ \left| \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}} \right| }^{2}}\\ =&\Bigg ( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} \Bigg ) \Bigg ( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}ht.\\&+ {{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }} \Bigg ) \\ =&\bigg (\left. \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} \Bigg )\Bigg ( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}} \right. \Bigg )\\&+\left. \Bigg ( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} \right. \Bigg )\,{{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }}. \end{aligned} \end{aligned}$$
(20)

By the property (iii) of positive semidefinite matrices, it follows that

$$\begin{aligned} \begin{aligned}&\left| {{r_{\left( {{i_1} \cdots {0_s} \cdots {i_t} \cdots {i_N}} \right) \left( {{i_1} \cdots {j_s} \cdots {0_t} \cdots {i_N}} \right) }}} \right| \\ \le&\sqrt{{r_{\left( {{i_1} \cdots {0_s} \cdots {i_t} \cdots {i_N}} \right) \left( {{i_1} \cdots {0_s} \cdots {i_t} \cdots {i_N}} \right) }}{r_{\left( {{i_1} \cdots {j_s} \cdots {0_t} \cdots {i_N}} \right) \left( {{i_1} \cdots {j_s} \cdots {0_t} \cdots {i_N}} \right) }}} \end{aligned} \end{aligned}$$

So we can get

$$\begin{aligned} \begin{aligned}&\left| \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}} \right| \\ \le&\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{\left| {{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }} \right| } \\ \le&\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{\sqrt{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}} \\ \le&\sqrt{\left( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}})(\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}}\right) }.\\ \end{aligned} \end{aligned}$$
(21)

After both sides of this Formula (21) is squared and subtracted, we obtain

$$\begin{aligned} \begin{aligned}&{{\left| \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}} \right| }^{2}} \\&\quad - \left( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} \right) \left( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{i}_{N}} \right) }}} \right) \\&\le 0 .\\ \end{aligned} \end{aligned}$$
(22)

But from Eq. (20), we obtain that the difference between the two expressions in left side of Formula (22) is \((\sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} ){{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }}\), which is greater than or equal to 0, so we have

$$\begin{aligned} \begin{aligned}&\left( \sum \limits _{{{i}_{V\backslash \{s,t\}}}\in I}{{{r}_{\left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) \left( {{i}_{1}}\cdots {{0}_{s}}\cdots {{i}_{t}}\cdots {{i}_{N}} \right) }}} \right) {{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }} \\&= |{{c}_{ti}}{{|}^{2}}{{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }}\\&= 0 .\\ \end{aligned} \end{aligned}$$

As \(|c_{ti}|^2 \ne 0\), we can get \({{r}_{\left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) \left( {{{{i}'}}_{1}}\cdots {{j}_{s}}\cdots {{0}_{t}}\cdots {{{{i}'}}_{N}} \right) }}=0\).

This end the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Jia, HY., Li, DD. et al. N-qudit SLOCC equivalent W states are determined by their bipartite reduced density matrices with tree form. Quantum Inf Process 19, 423 (2020). https://doi.org/10.1007/s11128-020-02918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02918-9

Keywords

Navigation